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Abstract The mic2 mutation dominantly blocks formation of

mannosyl-diinositolphosphorylceramide, the most abundant

sphingolipid of the yeast, Saccharomyces cerevisiae. Interest-

ingly, lack of mannosyl-diinositolphosphorylceramide is not

lethal but is compensated for by increased amounts of

inositolphosphorylceramide and mannosyl-inositolphosphorylcer-

amide in the plasma membrane and Golgi of the mutant. The

level of negatively charged phospholipids in the plasma

membrane of the mic2 strain is markedly reduced; the sterol

composition is not altered. In spite of dramatic changes of its

lipid composition the mutant grows like wild type on complex and

minimal media, under osmotic stress conditions, at low pH, and

in the presence of high ionic strength. While sensitivity to several

drugs is not altered, the mic2 mutant strain becomes resistant to

the polyene antibiotic nystatin.
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1. Introduction

As in higher eukaryotic cells, phospholipids, sterols, and

sphingolipids are the major membrane lipid components of

the yeast, Saccharomyces cerevisiae. The sphingolipids of

this microorganism contain a long-chain amino alcohol, phy-

tosphingosine, amide-linked to a very long-chain fatty acid

(mostly a C26 hydroxy fatty acid), and inositol phosphate or

mannosylated inositolphosphate as polar head group. The

three classes of yeast sphingolipids, IPC
1
, MIPC, and

M(IP)2C [1], are intermediates and products of a common

biosynthetic pathway. IPC is produced in the endoplasmic

reticulum by IPC synthase that catalyzes the condensation

of inositolphosphate with ceramide [2,3]. After transport to

the Golgi, IPC is converted to MIPC with GDP-mannose as

the carbohydrate donor [4]. Finally, introduction of the sec-

ond inositolphosphate group results in the formation of

M(IP)2C in the Golgi [5].

Only few yeast mutants defective in the biosynthesis of

sphingolipids are known. The phytosphingosine auxotrophic

mutants, lcb1 and lcb2 (long-chain base auxotrophic) are de-

fective in serine palmitoyltransferase [6]. Both genes are essen-

tial, and mutants are not viable unless supplemented with

phytosphingosine. An lcb1 mutant carrying the SLC1

(sphingolipid compensation) suppressor gene is viable in the

absence of long-chain bases. These suppressor mutants, how-

ever, synthesize novel phosphatidylinositol derivatives with a

C26 fatty acid in the sn-2 position and structurally mimic

sphingolipids [7]. The slc1 mutant cannot grow at low pH,

high salt concentration, or high temperature [8] indicating

that the novel phosphatidylinositol species cannot fully com-

pensate for the lack of sphingolipids. Based on the ¢nding

that the SLC1 gene complements the growth phenotype of

an E. coli acyltransferase mutant plsC, Slc1p was suggested

to be a fatty acyltransferase [9]. A Ca
2�

hypersensitive muta-

tion, csg2, was found to a¡ect the synthesis of mannosylated

sphingolipids [10]. Csg2p is required for Ca
2�

regulation, and

supplementation with phytosphingosine reverses the Ca
2�

sen-

sitive phenotype of the csg2 strain. Suppressor mutants of

csg2, scs, also have an altered sphingolipid metabolism [11].

Scs1p is identical to Lcb2p, the regulatory subunit of serine

palmitoyltransferase. These observations led to the idea that

ceramide synthesis in yeast is either regulated by Ca
2�

and/or

is required for Ca
2�

homeostasis.

Here we report isolation of a novel yeast mutant, termed

mic2, which is defective in the last step of the sphingolipid

biosynthetic pathway, the formation of M(IP)2C. The mutant

phenotype is described, and possible roles of M(IP)2C in plas-

ma membrane function are discussed.

2. Material and methods

2.1. Yeast strains and culture conditions

Wild type strains of Saccharomyces cerevisiae, W303 (MATa, ura3,

trp1, leu2, ade2, his3, can1) and X2180-1A (MATKK, SUC2, mal, gal2,

CUP1), the temperature-sensitive secretory mutant sec1 (provided by

R. Schekman), and the M(IP)2C de¢cient strain mic2 (MATKK, ura3,

trp1, leu2, ade2, his3) were used throughout this study. Cells were

grown either in complex medium (YPD) containing 3% glucose, 2%

peptone, and 1% yeast extract (Difco), or in inositol-free medium [12]

under aerobic conditions at 30³C or 24³C. Growth of yeast cells was

determined by measuring the optical density at a wavelength of 600

nm.

The mic2 mutation was initially detected in the genetic background

of a temperature-sensitive sec1 mutant. To isolate the mic2 strain, sec1

was backcrossed to W303, diploids were sporulated, and tetrads were

dissected by standard procedures [13]. Tetrads were analyzed for tem-

perature sensitivity and M(IP)2C formation (see below), and M(IP)2C

de¢cient strains that were not temperature sensitive were isolated. The

mic2 mutant was established after four rounds of backcrossing of the

mutant to the wild type strain W303.

Drug resistance of strains was tested in plate assays. Sterilized YPD

agar was cooled to 50³C, and drugs were added from stock solutions

and mixed with the agar. Plates were poured and used the following

day to avoid loss of activity of the drugs. Yeast strains to be tested
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were suspended in liquid YPD, and 5 Wl spots were applied to plates.

Plates were incubated for 1^3 days at 30³C.

2.2. Isolation and characterization of yeast subcellular membranes

Plasma membrane was isolated by the method of Serrano [14], and

the Golgi-fraction was prepared as described by Leber et al. [15]. The

quality of the preparations and cross-contamination with other organ-

elle membranes were judged by immunoblot analysis and measure-

ment of marker enzyme activities as described by Zinser and Daum

[16].

Proteins were quanti¢ed by the method of Lowry et al. [17], SDS-

PAGE was carried out as described by Laemmli [18], and Western

blot analysis was performed by the method of Haid and Suissa [19].

Immunoreactive proteins were detected by ELISA with peroxidase-

and phosphatase-conjugated goat anti-rabbit secondary antibodies.

2.3. Analysis of lipids

Labeling of yeast sphingolipids with [
3
H]inositol, extraction of

sphingolipids from subcellular fractions, thin-layer chromatographic

separation and quanti¢cation were performed as described previously

[20]. Phospholipids and sterols were extracted by the procedure of

Folch et al. [21]. Individual phospholipids were separated by two-

dimensional thin-layer chromatography on Silica gel 60 plates using

chloroform/methanol/25% NH3 (65:35:5, per vol.) as ¢rst, and

chloroform/acetone/methanol/acetic acid/H2O (50:20:10:10:5, per

vol.) as second developing solvent. Phospholipids were visualized by

iodine staining, scraped o¡ the plate, and quanti¢ed by the method of

Broekhuyse [22]. For ergosterol quanti¢cation samples and standards

were applied to thin-layer plates, chromatographed using light petro-

leum/diethylether/acetic acid (70:30:2, per vol.), and scanned at 275

nm using a Shimadzu dual-wavelength chromato scanner CS-930. In-

dividual sterols were analyzed after alkaline hydrolysis [23] of the lipid

extract by gas chromatography-mass spectrometry using a Hewlett-

Packard 5892 II plus and a Hewlett-Packard MSD 5972 mass selective

detector. The column used was HP-5MS, injector temperature was

280³C, and detector temperature 300³C.

2.4. Anisotropy measurement

Fluidity of the plasma membrane was determined in vitro by meas-

uring the £uorescence anisotropy of trimethylammonium diphenyl-

hexatriene (TMA-DPH) probe. Samples containing 100 Wg membrane

protein were incubated with 2.7 nmol TMA-DPH for 30 min at 30³C.

Fluorescence measurements were carried out using a Shimadzu RF

540 spectro£uorimeter as described previously [24].

3. Results and discussion

Labeling experiments with [

3
H]inositol of a number of tem-

perature-sensitive yeast secretory mutants revealed that one of

these strains, namely a sec1 mutant, had a second mutation in

its genetic background that manifested itself by the absence of

the major yeast sphingolipid, M(IP)2C [25]. This mutant was

backcrossed to the wild type strain W303, and tetrads were

screened for temperature sensitivity and M(IP)2C synthesis.

This analysis revealed that the defect in the biosynthesis of

M(IP)2C and the sec1 mutation were not linked. Four addi-

tional rounds of backcrossing resulted in the isolation of the

temperature-insensitive mic2 mutant. Fig. 1 shows the pattern

of [
3
H]inositol-labeled lipids of the original sec1 strain and

two spore-derived colonies of a tetrad from backcrosses

with the wild type W303. One of these strains (Fig. 1, lanes

B) lacked M(IP)2C, whereas M(IP)2C was detectable in the

other (Fig. 1, lanes A). The original sec1 strain does not form

M(IP)2C. IPC and MIPC are present at comparable levels in

all strains. The M(IP)2C
�
/M(IP)2C

3

phenotype segregated

2:2 indicating a single chromosomal mutation. A heterozy-

gous diploid strain mic2/MIC2 did not produce M(IP)2C in-

dicating that the mic2 mutation is dominant.

What are the cell biological consequences caused by the

mic2 mutation? To answer this question two subcellular frac-

tions were analyzed in detail : the plasma membrane, which is

the compartment with the highest concentration of M(IP)2C

in wild type cells [26,20], and the Golgi, the site of MIPC and

M(IP)2C synthesis [5]. Comparing the sphingolipid composi-

tion of the plasma membrane and the Golgi of mic2 and wild

type (Table 1) demonstrated that in both compartments of the

mic2 mutant M(IP)2C was not detectable. The ratio of total

sphingolipids to protein is markedly higher in the plasma

membrane of mic2 than in wild type (Table 2). Thus, lack

of M(IP)2C in the mutant is apparently compensated for by

increased amounts of IPC and MIPC.

The ergosterol concentration in the plasma membrane of

the mutant was comparable to the wild type, whereas the

phospholipid content in the plasma membrane of mic2 was

approximately 30% lower than in the control (Table 2). Com-

parison of the phospholipid composition of the plasma mem-

brane of mic2 and wild type revealed that the lack of M(IP)2C

markedly a¡ects the ratio of negatively charged to uncharged
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Table 1

Sphingolipid composition of plasma membrane and Golgi of mic2 and wild type

Strain Membrane IPC/protein MIPC/protein M(IP)2C/protein

(nmol/mg) (nmol/mg) (nmol/mg)

X2180 Plasma membrane 51 106 81

mic2 Plasma membrane 134 349 ND

X2180 Golgi 155 18 47

mic2 Golgi 3 108 ND

ND, not detectable; 3, not determined. Plasma membrane and Golgi from mic2 and the parental wild type X2180 were isolated and analyzed for

their amount of sphingolipids as outlined in Section 2. Data shown are mean values of three independent experiments with a mean deviation of

þ 10%.

Fig. 1. The yeast mutant mic2 is de¢cient in conversion of MIPC to

M(IP)2C. Lipids of two isogenic spores of a tetrad (A: MIC2 ; B:

mic2) and the original sec1 strain were labeled with [
3
H]inositol at

temperatures indicated, extracted and analyzed by thin-layer chro-

matography as described in Section 2.
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phospholipids (Table 3): the plasma membrane of wild type

cells contains approximately 55%, whereas that of the mic2

mutant contains only 41% negatively charged phospholipids.

This alteration is mainly due to a decrease of phosphatidyl-

serine and phosphatidylinositol, and an increase of phospha-

tidylethanolamine in the plasma membrane of mic2. Thus, the

elevated level of negatively charged total sphingolipids in the

mutant plasma membrane appears to be compensated for by a

decrease of negatively charged phospholipids.

We next investigated whether the altered sphingolipid and

phospholipid composition of the plasma membrane of the

mic2 mutant has an e¡ect on membrane £uidity. Anisotropy

measurements using trimethylamino-diphenyl-1,3,5-hexatriene

(TMA-DPH) as a probe for lipid mobility or £exibility in the

membrane demonstrated that this is not the case. The aniso-

tropy of TMA-DPH in the plasma membrane of both mutant

and wild type strain was 0.27. This result suggests that the

increased levels of IPC and MIPC together with the altered

phospholipid composition of the mic2 mutant compensated

for the absence of M(IP)2C in such a way as to keep the

membrane £uidity constant.

The altered lipid composition of the mic2 mutant might be

expected to cause an abnormal growth phenotype. Surpris-

ingly, the mutant grew like wild type under various conditions

tested, such as on rich medium (YPD), minimal medium, on

di¡erent carbon sources (glucose, ethanol, lactate), in the

presence of 1 M NaCl, 1 M sorbitol plus 0.5 M NaCl, at

pH 3, and on inositol-free medium. Di¡erent growth temper-

atures (10³C, 24³C, 30³C, and 37³C) also did not signi¢cantly

a¡ect cell viability. Similarly, the presence of 0.1 M Ca
2�
,

Mg
2�
, or Li

�
, and 1 mM Cu

2�
in the growth medium did

not speci¢cally a¡ect growth of mic2. In contrast to the csg2

mutant, mic2 is not sensitive to Ca
2�

at concentrations of 0.1

M indicating that IPC and/or MIPC but not M(IP)2C a¡ect

Ca
2�

homeostasis.

Drug sensitivity of mic2 was tested with cycloheximide (0.1^

0.3 Wg/ml; inhibitor of cytosolic protein synthesis), chloram-

phenicol (10^50 Wg/ml; inhibitor of protein synthesis in mito-

chondria), valinomycin (250 Wg/ml; ion carrier destroying

membrane potential), Brefeldin A (50 Wg/ml; disassembling

Golgi in mammalian cells and yeast strains defective in certain

steps of sterol metabolism [27]), and terbina¢ne (10^70 Wg/ml;

inhibitor of fungal squalene epoxidase) [28]. None of these

drugs speci¢cally a¡ected growth of the mutant. In contrast,

nystatin, a polyene antibiotic [29], at a concentration of 10 Wg/

ml inhibited growth of the wild type strain but not that of

mic2. Tetrad analysis con¢rmed that nystatin resistance co-

seggregated with the block in M(IP)2C synthesis (data not

shown).

The antimycotic drug nystatin has been described to inter-

act with sterol of the plasma membrane forming pores, caus-

ing leakage of cellular constituents and ultimately cell death

[29]. Some sterol mutants such as erg3 and erg6, which have

an altered sterol composition of the plasma membrane, are

resistant to nystatin [30,31], whereas others, such as erg4,

remain nystatin sensitive (D. Zweytick, unpublished results).

These ¢ndings may be explained by similar interaction of

nystatin with sterols di¡erent from ergosterol, such as ergo-

sta-5,7,22,24(28)-tetraenol accumulating as the end-product in

the erg4 mutant. On the other hand, Kerridge [29] reported

that strains with apparently similar sterol composition exhib-

ited markedly di¡erent sensitivity to polyene antibiotics. The

author suggested that additional factors may be responsible

for sensitivity to these drugs. Sphingolipids may be a target

for nystatin similar to or in combination with ergosterol. In-

teraction of nystatin with M(IP)2C in combination with ergo-

sterol is compatible with the idea that membrane domains

enriched in the two lipid classes may exist in the plasma mem-

brane. Such detergent insoluble membrane domains of the

yeast plasma membrane have recently been described [32].

Studies on lipid sorting in epithelial cells [33] suggest that

sphingolipids and cholesterol aggregate in the lumenal lea£et

of Golgi membranes. These aggregates may then be preferen-

tially included into anterograde vesicles which transport

sphingolipids and sterols to the cell periphery. In yeast, trans-

port of sphingolipids from their site of synthesis to the plasma

membrane has been shown to follow the secretory pathway

[5,25]. Enrichment of ergosterol in secretory vesicles [34] sug-

gests participation of the secretory machinery in ergosterol

transport to the plasma membrane. Thus, a sterol/sphingoli-

pid co-transport may also function in yeast and contribute to

the formation of ergosterol/M(IP)2C-rich domains in the plas-

ma membrane. If nystatin preferentially interacts with these

domains, lack of one component may lead to resistance

against the drug.
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