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Abstract The 1 H-NMR spectrum of a synthetic 24-residue 
peptide (A^G-V-D-S-S-L-I-A-G-Y-G-S-T-Q-T-S-G-S-D-S-A-
L-T2 4; INP24), comprising three repeats of the 8-residue 
consensus sequence of Pseudomonas syringae ice nucleation 
protein, was fully assigned using 2-dimensional (2D) NMR 
spectroscopy at 4°C and 30°C. Close proximity of the aliphatic 
protons between Leu7 , He8, Ala9 , and the ring-protons of Tyr11 

was indicated from the observation of the inter-molecular nuclear 
Overhauser enhancement (NOE) effect. Hydrogen-bonding was 
strongly suggested for the N H group of Leu7 from its extremely 
low-temperature coefficient estimated from the temperature 
dependence of the chemical shift. These results indicate the 
formation of a hairpin-loop conformation constructed by a 
hexapeptide segment of INP24, -Leu7-Ile8-Ala9-Gly10-Tyr11-
Gly12 . 

© 1997 Federation of European Biochemical Societies. 
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1. Introduction 

Freezing of water is initiated by formation of an ice crystal 
by assembly of water molecules onto an embryo nucleation 
particle [1]. Ice-nucleation protein (INP) located at the outer 
membrane of Gram-negative epiphytic bacteria is one of the 
most effective nucleating agents for freezing, which frost tea 
plants and other crops [2]. I N P from Pseudomonas syringae is 
a single polypeptide (residues = 1200; M W = — 120 kDa) com-
prising three distinct domains : the N-terminal domain ( ~ 1 9 
kDa) , a central domain ( ~ 9 4 kDa) , and the C-terminal do-
main ( ~ 7 kDa) [3]. Among these, the central domain is 
uniquely composed of about 20 times repeats of a 48-residue 
high-fidelity consensus sequence. This 48-residue sequence is 
subdivided into three 16-residue medium-fidelity repeats and 
is further divided into six 8-residue low-fidelity repeats [1]. It 
has been thought that this tandemly repetitive amino acid 
sequence of I N P mimics an ice-like surface: a nucleation 
site for freezing [4-6]. The N - and C-domains contain no 
such repetitive sequence and are thought to be involved in 
assembly and/or stabilization of the central domain to the 
membrane [1]. 

The structural information elucidated by N M R and X-ray 
diffraction is indispensable for understanding the structure 
and function of INP and engineering the molecule with im-
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Abbreviations: INP24, a 24-residue peptide of ice-nucleation protein; 
NOE, nuclear Overhauser enhancement; COSY, chemical shift 
correlated spectroscopy; NOESY, 2D NOE spectroscopy; ROESY, 
2D rotating-frame Overhauser spectroscopy 

proved activity. However, no direct spectroscopic data of I N P 
has been presented so far, while the 3D-structure models have 
been proposed [4-6]. These models assume that the tandem 
repeat domain constructs a non-globular super-secondary 
structure having many ß-turns in high periodicity [1,7]. The 
proposed models, however, differ in the assignment of the 
lower-order repetitive sequence conformation, as well as in 
the spacial packing into the higher-order sequence [4-7]. 
Thus, it seems that the first priority should be a study of 
the lower-order tandem repeat sequence of INP. 

In the present study we attempted to clarify the conforma-
tional features of INP24, a synthetic 24-residue peptide com-
prising three tandem repeats of the low-fidelity 8-residue con-
sensus sequence (A'-G-V-D-S-S-L-I-A-G-Y-G-S-T-Q-T-S-G-
S-D-S-A-L-T24), which corresponds to the amino acid resi-
dues 360-383 (or 456^479) of Pseudomonas syringae I N P [3]. 
All ^ - r e s o n a n c e s of INP24 at 4°C and 30°C were assigned 
by 2 D - N M R experiments. The N M R conformational param-
eters of temperature coefficient [8], inter-nuclear Overhauser 
effect (NOE) [9], and VHN-HCI coupling constants [10], were 
used to reveal a formation of a hairpin-loop structure at a 
local port ion in the INP24 polypeptide. 

2. Material and methods 

The 24-residue repetitive peptide INP24 was synthesized using a 
Milligen 9050 peptide synthesizer and was further purified by HPLC 
column chromatography. The INP24 sample was dissolved at a final 
concentration of 2.5 mM in 500 μΐ of either 99% D 2 0 or 90% H 2 0 
(10% D 2 0 for the lock) containing 25 mM KC1. The pH value of 
these sample solutions was adjusted to 6.7 (not deuterium corrected). 
All NMR experiments were carried out on a JEOL JNM-Alpha500 
(500 MHz) spectrometer in the temperature range 4-30°C. All ΧΗ-
resonances at two different temperatures (4°C and 30°C) were as-
signed by acquiring the following four sets of 2D-NMR data: (1) 
DQF-COSY [11]; (2) TOCSY (mixing time = 35-75 ms) [12]; (3) NO-
ESY for 4°C (mixing time =100-500 ms) [13]; and (4) ROESY for 
30°C (mixing time = 100-500 ms) [14]. All of the 2D experiments were 
acquired in the phase-sensitive mode [15], in 256-512 t\ increments, 
with a pre-saturation delay of 1.5-2.0 s, using a DANTE-pulse se-
quence [16]. The temperature coefficient (-AdIAT, ppb Kr1) was esti-
mated from the change in NH-resonance chemical shift with temper-
ature (4-30°C). The NMR data processing was done on a SGI 
Indigo2 work-station using the NMRPipe software [17]. The 2D-
NMR data were zero filled to 2KX2K complex points, and a shifted 
sine-square window function was applied for resolution enhancement 
in both coi and ω2 dimensions. The 3^ΗΝ-Ηα coupling constants were 
estimated from DQF-COSY (30°C) with resolution enhancement by 
1 6 ^ X 2 ^ zero-filling using a shifted sine-bell window function. Chem-
ical shifts were measured from the internal standard, 2,2-dimethyl-2-
silapentane-5-sulfonic acid (DSS). 
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3. Results 

3.1. Spectral assignment of INP24 
The first assignment step was to classify the pattern of 

TOCSY cross-peaks according to the spin-system of an amino 
acid with reference to the empirically known chemical shift 
positions [18]. Fig. 1 shows an expansion of the TOCSY spec-
trum for INP24 at 4°C. Peak assignments are indicated by 
lines connecting the cross-peaks with the amino acid residual 
number of INP24. The cross-peaks of Ile(8), Leu(7, 23), 
Thr(24, 16, 14), Val(3), and Ala(22, 1, 9) were identified on 
the basis of their characteristic methyl-containing spin sys-
tems. Among these, the strings of cross-peaks of Ala1 and 
Ala9 are overlapped at 8.50 ppm (coi) at this temperature, 
but are separated by 0.04 ppm at 30.0°C (see Table 1). The 
cross-peaks of the AMX-type amino acids of INP24, Tyr(ll) 
and Asp(4, 20), were identified separately. Only the former is 
linked with the aromatic δ- and ε-ring proton resonances (6.82 
and 7.18 ppm) as determined by NOESY experiments. The 
Gln(15) residue was identified by the NH-CßH2 and NH-
CYH2 cross-peaks observed at their typical resonance posi-
tions (2.02, 2.14, and 2.37 ppm)[18]. Cross-peaks originating 
from two Gly(10, 18) and two Ser(13, 17) were identified 
separately, while those from two other Gly(2, 12) were over-
lapped with the NH-CßH2 cross-peaks of two other Ser(6, 17). 
This overlapping problem was overcome by comparison with 
the DQF-COSY spectrum obtained at 4°C (Fig. 2a), which 
contains no Ser NH-CpH2 cross-peaks. The spectrum allowed 
us to identify the NH-C aH cross-peaks of all Gly and Ser 
without overlapping. 

The second assignment step was to link the DQF-COSY 
(NH, CaH) cross-peak of residue / with that of residue /+1 
sequentially along the main-chain of INP24. In this step, 
daN-, dNN-, and dßN-NOE connectivities [19] between neigh-
boring residues were measured from NOESY (4°C) and RO-
ESY (30°C). A total of 24 cross-peaks originated from the 

backbone protons of INP24 are observed dispersively in the 
finger-print region of the DQF-COSY as shown in Fig. 2a 
(cross-peak assignment indicated). The cross-peak patterns 
of Gly10 and Gly12 are different from those of the other two 
glycines, Gly2 and Gly18. This is a consequence of the small 
3^HNHa coupling constant of these glycines between their NH-
and one of the C aH protons, which is due to a motional 
restriction in a local conformation. The sequential daN-
NOE connectivities along the main chain of INP24 was in-
dicated in the NOESY spectrum shown in Fig. 2b (the same 
region as Fig. 2a), in which the assignments of COSY-type 
(NH, CaH) cross-peaks are indicated by the residual numbers. 
The vertical lines represent the NOESY d a N connectivities 
from residue i to residue i+1. The horizontal lines then locate 
the COSY-type cross-peak of the residue /+1. Consequently, 
the assignment spiral for all 24 residues of INP24 is obtained. 
This data, together with the observation of the sequential 
dNN- and dßN-NOE connectivities, enable assignment of all 
the ^-resonance of INP24 unambiguously. 

3.2. NMR conformational analysis of INP24 
The secondary structure prediction of INP24 by Chou and 

Fasman's method [20,21] showed that INP24 mostly favors 
the ß-turn and/or ß-strand conformation. Conformational in-
formation can be examined by the following 1H-NMR param-
eters : 
1. the chemical shift index (CSI) [18,22] 
2. the temperature coefficient (-Ad/AT, ppb Kr1) of the NH-

resonance [8] 
3. the 3/HN-CCIH coupling constant [10] 
4. the intra- and inter-residue NOE [23,24] 
CSI is defined by the difference between the measured chem-
ical shift for C aH and the chemical shift reported for its 
random coil position [22]; CSI is strongly dependent on sec-
ondary structure (oc-helix, ß-strand, or coil). The relatively low 
NH-resonance temperature coefficient (e.g. <4.0 ppb K~l) 

Fig. 1. An expansion of TOCSY (mix = 75 ms) spectrum of INP24 at 4°C (500 MHz). The assignment are indicated by the residual number 
labeled beside the strings of cross-peaks, which represent the spin system of each amino acid. 
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Table 1 
Conformational parameters (-Δδ/ΔΓ, /ΗΝ-ΗΟ, CSI) and the Ή-NMR chemical shifts of the 24-residue consensus peptide of P. syringae INP 

Residue No. -Δδ/ΔΓ ΛΐΝ- CSI HN Ha Ηβ Ηγ Others 
Ala 

Gly 

Val 

Asp 

Ser 

Ser 

Leu 

He 

Ala 

Gly 

Tyr 

Gly 

Ser 

Thr 

Gin 

Thr 

Ser 

Gly 

Ser 

Asp 

Ser 

Ala 

Leu 

Thr 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

7.6 

7.3 

6.5 

7.3 

8.8 

4.2 

2.3 

5.7 

9.2 

8.4 

5.7 

6.5 

4.6 

6.9 

5.3 

6.5 

6.9 

6.9 

5.0 

5.3 

6.1 

5.7 

6.1 

5.3 

8.4 

8.4 

8.1 

8.4 

6.5 

4.1 

7.7 

4.1 

8.4 

8.4 

8.7 

7.7 

8.7 

7.3 

8.1 

8.30 
8.50 
8.44 
8.63 
7.94 
8.11 
8.44 
8.63 
8.39 
8.62 
8.45 
8.56 
7.92 
7.98 
7.82 
7.97 
8.26 
8.50 
8.24 
8.46 
8.06 
8.21 
8.39 
8.56 
8.17 
8.29 
8.25 
8.43 
8.41 
8.55 
8.25 
8.42 
8.40 
8.58 
8.47 
8.65 
8.26 
8.39 
8.44 
8.58 
8.23 
8.39 
8.31 
8.46 
8.11 
8.27 
7.91 
8.05 

4.32 
4.28 
3.94/3.94 
3.96/3.96 
4.15 
4.10 
4.66 
4.67 
4.36 
4.33 
4.36 
4.28 
4.35 
4.34 
4.11 
4.09 
4.28 
4.28 
3.90/3.90 
3.94/3.86 
4.55 
4.51 
3.92/3.92 
3.97/3.83 
4.55 
4.53 
4.40 
4.40 
4.45 
4.43 
4.40 
4.40 
4.52 
4.50 
4.05/4.05 
4.04/4.04 
4.50 
4.48 
4.66 
4.66 
4.42 
4.39 
4.33 
4.31 
4.39 
4.39 
4.31 
4.31 

1.39 
1.39 

2.08 
2.07 
2.75/2.68 
2.80/2.65 
3.95/3.90 
3.92/3.86 
3.97/3.90 
3.89/3.86 
1.67/1.62 
1.67/1.59 
1.87 
1.88 
1.38 
1.39 

3.09/3.02 
3.06/3.06 

3.92/3.89 
3.91/3.88 
4.28 
4.27 
2.15/2.01 
2.14/2.02 
4.28 
4.27 
3.95/3.90 
3.91/3.88 

3.96/3.90 
3.91/3.85 
2.75/2.68 
2.76/2.69 
3.97/3.90 
3.91/3.87 
1.42 
1.42 
1.72/1.66 
1.74/1.65 
1.21 
1.21 

1.47/1.19 
1.48/1.20 

1.22 
1.22 
2.38/2.38 
2.37/2.37 
1.22 
1.22 

0.96/0.89 
0.96/0.89 

0.92/0.92 
0.92/0.92 

0.94/0.85 
0.93/0.83 
0.90/0.84 
0.93/0.83 

Two sets of the chemical shifts are given for each amino acid: top line, value at 30°C; bottom line, value at 4°C. 

indicates hydrogen bonding. The 3/HN-COLH coupling constant 
provides the dihedral φ angle information. For example, 3J is 
approximately 3.9 Hz for helices (<p = -57°), and 8.9 Hz for 
antiparallel ß-sheets (φ = -139°) [10]. NOE provides proximity 
information on the protons located within about 5 A of each 
other. These criteria were utilized in the present study to ex-
amine the conformation of INP24. 

Table 1 lists the temperature coefficient (-Αδά/ΑΤ), the 
37κΝ-Ηα coupling constant, the CSI, and the assignment of 
the ^-resonances (30°C and 4°C) of each amino acid residue 
of INP24. The VHN-CKH coupling constants for the amino 
acid residues from Ser19 to Thr24 are relatively large (~8.8 
Hz), suggesting ß-sheet formation. However, CSI values ob-
tained for most of these residues are equal to zero, indicating 
coil, rather than ß-sheet formation. CSI values of +1 or -1 
indicate oc-helix or ß-sheet conformation in the peptide, but 
no such values were found for any segment of INP24. An 

extremely low-temperature coefficient was obtained only for 
Leu7 (2.3 ppb K^1), which suggests strongly that the NH 
group of Leu7 is hydrogen-bonded to the CO group of anoth-
er residue. This hydrogen bond is presumably involved in 
INP24's local structure. 

Fig. 3 shows an expansion of the NOESY spectrum of 
INP24 (4°C). The horizontal lines indicate the positions of 
the δ- and ε-ring proton resonances of Tyr11. The vertical lines 
indicate the positions of the aliphatic proton resonances of 
Leu7, He8, Ala9, Gly10, and Tyr11 as labeled. In Fig. 3, 
cross-peaks observed at the line intersections represent the 
intra- and inter-residue NOEs originating from Leu7, He8, 
Ala9, Gly10, and Tyr11. This result implies that the ring-pro-
tons of Tyr11 (CgH, CeH) are proximal to the main- and side-
chain protons of Leu7, He8, Ala9, and Gly10. As for the other 
residues of INP24, no significant inter-residue NOE was de-
tected. 
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Fig. 2. The finger-print region of DQF-COSY spectrum (a) and the corresponding region of NOESY spectrum (b) of INP24 at 4°C (500 
MHz). The full assignment of the (NH, CaH) cross-peaks are indicated in DQF-COSY. In the NOESY vertical lines represent the daN-NOE 
connectivities from residue i to residue / + 1 . The horizontal lines then locate the COSY-type (NH, CaH) NOE cross-peak of residue i + l . The 
dßN-NOE cross-peak between Ser6 and Leu7 is indicated by an asterisk. 

4. Discussion These types of ß-turns commonly consist of four residues with 
a hydrogen bond between the NH group of the first residue 

Previous modeling studies assumed the formation of ß-turns and the CO group of the fourth residue (denoted 1 -> 4 hydro-
(I, II, and III) in the tandem repeat sequence of INP [4-6]. gen bond) [25,26]. However, the present NMR study shows 

Fig. 3. An expansion of NOESY (mix= 100 ms) spectrum of INP24 at 4°C (500 MHz). The horizontal lines indicate the positions of the δ- and 
ε-ring proton resonances of Tyr11. The vertical lines indicate the positions of the aliphatic proton resonances of Leu7, He8, Ala9, Gly10, and 
Tyr11. The cross-peaks observed at the line intersections represent the intra- and inter-residue NOE originated from these amino acid residues. 
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periodicity in the tandem repeat domain of INP . It could be 
assumed that this hydrophobic region constructed on one side 
of the loop participates in the self-stacking of the repetitive 
domain, which leads to the construction of the overall 3D 
structure. In addition, the conformational bending around 
the -T-S-G-S- port ion which was assumed in the 3D models 
[5,6], is not observed by the present study and by our prelimi-
nary N M R results for another 24-residue peptide of I N P (not 
shown). Therefore, the hairpin loop is thought to be con-
structed with a 16-residue periodicity if the loop is an essential 
conformation unit of the repetitive domain of INP . 

Acknowledgements: The authors are grateful to Dr. Andy Schmitz for 
careful reading of the present paper. 
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