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Abstract CD38 is a transmembrane glycoprotein involved as an 
orphan receptor in many physiological processes of  lymphocytes. 
It is also a bifunctional enzyme that catalyzes at its ectocellular 
domain the synthesis from N A D  + (cyclase) and the hydrolysis 
(hydrolase) of  the calcium-mobilizing metabolite cyclic ADP-  
ribose (cADPR).  A still unexplained paradox concerns the 
relationship between ectocellular localization of CD38 and 
intracellular calcium-releasing activity of  its intermediate 
product cADPR.  Incubation of  CD38 + human Namalwa B cells 
with external N A D  + elicited extensive membrane down-regula- 
tion of CD38 and its internalization in non-clathrin-coated 
vesicles. Since the internalized CD38 was demonstrated to be 
enzymatically active, this NAD+-dependent process is a hitherto 
unrecognized means for shifting c A D P R  metabolism from the 
cell surface to the intracellular environment. 
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1. Introduction 

CD38 is a type II t ransmembrane glycoprotein predomi- 
nantly expressed in early and late stages of  lymphocyte devel- 
opment  [1,2]. Its involvement in many processes of  lympho- 
cyte proliferation and differentiation as a receptor for still 
unidentified ligand(s) is supported by a wide range of  effects 
on lymphocyte physiology elicited by ligation of  CD38 with 
specific monoclonal  antibodies (MoAbs)  [1,2]. 

CD38 is also a bifunctional ectoenzyme that catalyzes, at 
the outer surface of  many cell types [3], the sequential syn- 
thesis and degradation of  cyclic ADP-r ibose  (cADPR)  [4-8]: 
the two enzyme activities involved are an ADP-ribosyl  cyclase 
(responsible for the conversion of  N A D  + to nicotinamide and 
cADPR)  and a c A D P R  hydrolase that degrades c A D P R  to 
ADP-r ibose  (ADPR).  

The potent  calcium-releasing activity of  c A D P R  on ryano- 
dine-sensitive intracellular stores in several invertebrate and 
vertebrate cells [9 11] has raised expectations that this cyclic 
nucleotide may play a role in mediating CD38 receptor func- 
tions. An enhanced t ransmembrane calcium influx has been 
detected in murine B cells [12] following ligation with anti- 
CD38 antibodies, but there is no evidence that c A D P R  is 
involved. 
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Abbreviations: cADPR, cyclic ADP-ribose; ADPR, ADP-ribose; 
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A major,  still unresolved question on the CD38-cADPR 
system concerns the apparent contradiction between the ecto- 
cellular site of  CD38-catalyzed production of  c A D P R  and its 
intracellular calcium-mobilizing activity [2,11,13,14]. Neither 
c A D P R  influx across the plasma membrane nor cADPR-in-  
itiated signal transduction in responsive cells has been demon- 
strated so far, although external c A D P R  has been reported to 
enhance the proliferation of  activated murine B lymphocytes 
[4]. In addition, extracellular c A D P R  has been recently dem- 
onstrated to enhance the calcium response to depolarization 
in intact rat cerebellar granule cells [15]. 

An alternative mechanism for coupling the extracellular 
synthesis of  c A D P R  with its intracellular functions could be 
the internalization of  CD38. We have previously demon- 
strated that CD38, both purified from human erythrocyte 
ghosts and in situ in erythrocyte membranes,  undergoes ex- 
tensive self-aggregation in the presence of  either thiol com- 
pounds or  N A D  + [13,16,17]. Since ligand-induced receptor 
oligomerization is known to trigger subsequent internalization 
[18,19], we investigated the fate of  membrane CD38 following 
exposure of  intact CD38 + Namalwa cells (a continuous B-cell- 
derived line from Burkitt 's  lymphoma) to N A D  + or GSH. 
The data provided in this paper indicate that incubation of  
these cells with either reagent results in the cell surface deple- 
tion of  CD38. Concomitantly,  N A D  + proved to induce CD38 
internalization in these cells. This process, coupling down-reg- 
ulation of  surface CD38 with increased intracellular cyclase 
activity, may provide a hitherto unrecognized mechanism un- 
derlying CD38 functions. 

2. Materials and methods 

2.1. Materials 
Nitrocellulose membranes for ECL were purchased from Amer- 

sham, Milan, Italy. The IB4 MoAb [20] was a kind gift by Professor 
F. Malavasi. All chemicals were of the highest purity grade available 
from Sigma Chem Co., St. Louis, MO. 

2.2. Cell culture 
Namalwa cells (obtained from American Type Culture Collection 

(ATCC) Bethesda, MD) were grown in RPMI (Sigma) supplemented 
with 10% fetal calf serum (Sigma), penicillin (1 U/ml) and streptomy- 
cin (1 ~g/ml) at 37°C in a humidified atmosphere with 5% CO2. When 
incubated in the presence of NAD +, cells were seeded at 5 × 10'S/ml 
and cultured for up to 18 h. Cell density never exceeded 1.5 × 106/ml 
and cell viability was >90%. No apparent inhibition of cell growth 
was observed in the presence of NAD +. 

2.3. Flow cytometry 
This was performed as reported in the legend to Fig. 1, using a 

FACScan (Becton Dickinson, Milan, Italy). Five thousand events 
were analyzed per sample. 
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2.4. Biotinylation of Namalwa cells and affinity purification of 
biotinylated CD38 

Cells were washed in RPMI without serum and incubated at 4°C in 
PBS containing 5 mM glucose, 0.1 mM CaC12, 1 mM MgCI2 and 0.8 
mM NHS-SS-biotin (Pierce, Milan, Italy) at a density of 5× 10;'/ml 
[21]. After 20 min cells were centrifuged and the incubation repeated 
with a new solution. Cells were then washed twice in RPMI contain- 
ing 0.2% BSA (fatty acid free), resuspended in complete medium at a 
density of 5 x 10~/ml and cultured in the presence or absence (control) 
of 10 mM NAD + for 18 h. In a typical experiment, 1.5× 107 cells 
were used for each incubation. Removal of surface biotin from con- 
trol and NAD+-treated cells was obtained by incubating the cells at 
37°C in RPMI with 50 mM GSH at a density of 106/ml for 5 rain. 
This procedure was repeated twice. To remove unreacted GSH. cells 
were then washed twice in PBS containing 5 mg/ml iodoacetamide and 
once in RPMI. Finally, cells were solubilized at 1.5 x 107/ml in lysis 
buffer (PBS containing 1% Triton X-100, 5 mM EDTA, 10 ~tg/ml 
leupeptin, 50 lag/ml aprotinin, 250 ~tg/ml trypsin inhibitor) and cen- 
trifuged at 10000xg for 10 rain. The clear supernatants were incu- 
bated with immobilized streptavidin (Pierce), at 300 ~tl packed resin/ 
ml lysate, for 2 h at 4°C on a rotary shaker. The supernatants were 
recovered by centrifugation, the resin was washed in lysis buffer and 
the adsorbed (i.e. biotinylated) proteins were eluted with 0.1 M gly- 
cine, pH 2.0. The pH of the eluate was immediately neutralized with 1 
M Tris-HC1, pH 8.3, and eluates and supernatants from control and 
NAD+-treated cells were dialyzed overnight at 4°C against 5 mM 
Tris-HC1, pH 6.5, containing 0.05% Triton X-100, and concentrated 
to 1/10 the original volume. Protein concentration was determined 
according to Bradford [22] with the appropriate detergent concentra- 
tions in the blank and standard reagents. Each sample was then ana- 
lyzed by Western blot (following SDS-PAGE) and dot blot (see be- 
low). 

2.5. Western blot and dot blot 
SDS-PAGE was performed on 10% gels, according to [23], and 

proteins were blotted on nitrocellulose membranes as described in 
[13]. Saturation of the membranes and incubation with the first 
(IB4) and second Ab (anti-mouse IgG, Amersham, Milan, Italy) 
were performed following instructions of the Amersham ECL immu- 
nodetection kit. 

2.6. Assays of cyclase and hydrolase activities 
These were performed on intact cells as in [17], using 0.5 mM 

NGD + [24] and 0.5 mM cADPR, respectively, as substrates. Enzyme 
assays on solubilized cells (prepared either with 1% Triton X-100 or 
by freezing-thawing) were carried out as described in the legend to 
Table 1. 

2. 7. Immunofluorescence 
Visible pellets of Namalwa cells, either untreated or treated for 2 or 

6 h with 10 mM NAD +, were processed as described [25]. Briefly, cells 
were fixed in 3.7% paraformaldehyde in PBS, embedded at 4°C in 
ascending concentrations of sucrose in PBS, followed by OCT (Tis- 
sue-Tek, Miles Inc., Elkhart, IN) and frozen in liquid nitrogen. Sam- 
ples were then sectioned in a cryostat, laid on gelatin-coated glass 
slides and air dried. The primary IB4 antibody was used at 5 p.g/ml, 
the rabbit anti-clathrin antiserum (Sigma) was used at a 1:60 dilution. 
TRITC-conjugated goat anti-mouse or FITC-conjugated goat anti- 
rabbit IgG affinity purified antibodies (Jackson Immunoresearch, 
West Grove, PA) were used as secondary reagents. 

2.8. Cryoimmunoelectron microscopy 
Visible pellets of Namalwa cells, either untreated or treated for 2 or 

6 h with 10 mM NAD +, were processed as described [26]. All anti- 
bodies used were diluted in PBS, containing 0.02 M glycine. The 
primary IB4 antibody was used at 5 ~tg/ml. The second step reagent 
was a 10 nm gold-labeled goat anti-mouse lgG (ICN Biomedicals, 
Milan, Italy), diluted 1:50. The grids were observed and photo- 
graphed with a Zeiss EM 10/C electron microscope. 

3. Results 

We used both  flow cytometry and assays of  ectocellular 
cyclase and c A D P R  hydrolase activities to moni tor  surface 

CD38 upon incubation of  intact Namalwa cells with either 
o f  the two CD38-clustering agents, N A D  + or GSH 
[13,16,17]. In all experiments,  both reagents were used at de- 
liberately high concentrat ions to obviate any instability 
(mostly due to enzymatic degradat ion of  N A D  + and to oxi- 
dat ion of  GSH) over the incubation times required to induce 
the changes under study. However,  10-fold lower N A D  + or 
GSH gave the same effects on ectocellular CD38 enzyme ac- 
tivities at the shortest incubation times. 

3.1. Cytofluorimetric analysis 
Following 3 h incubation of  Namalwa cells in the presence 

of  10 m M  N A D  + the intensity of  CD38 immunofluorescence, 
as detected with the IB4 MoAb,  was reduced to approxi- 
mately 30% (Fig. 1). The same result was obtained using 
two different anti-CD38 MAbs,  IB6 and OKT10, which re- 
cognize different epitopes of  the glycoprotein [27]. The inten- 
sity of  cell surface immunofluorescence with an an t i -HLA I 
M o A b  was unaffected by t reatment  with N A D  +. A compar-  
able extent of  surface CD38 down-regulat ion was obtained 
upon exposure of  the cells to 10 m M  GSH (not shown). 

3.2. Assay o f  ectocellular and total cyclase activities 
Cyclase activity of  Namalwa  cells was assayed on N G D  +, 

to avoid interference by the c A D P R  hydrolase [13,24]. After 
2, 3 and 18 h incubation of  the cells at 37°C with 10 m M  
N A D  + (see Section 2.2), ectocellular cyclase activity decreased 
to 53+5%,  2 7 + 5 %  and 17+3% ( m e a n + S . D .  of  5 experi- 
ments),  respectively, of  the value of  control  cells (3.66_+ 0.20 
nmol cGDPR/min /mg  protein). A similar decay of  the cyclase 
activity was observed upon culturing the cells with 10 m M  
GSH. With either reagent, disappearance of  surface cyclase 
activity was closely paralleled by loss of  the hydrolase. Re- 
moval of  N A D  + from the medium following 3 h incubation 
resulted in slow re-expression of  membrane  CD38, as shown 
by the increase of  cyclase activity from 27 + 5% to 48 + 8% 
(mean + S.D. of  3 experiments) of  control  levels over 24 h at 

37°C. 
Cyclase activity was also assayed at the same times of  in- 

Table 1 
Cyclase activity of intact and Triton X-100-solubilized Namalwa 
cells cultured with NAD + 

Incubation time (h) Total 
. . . .  cyclase activity X 100 

e c l ; o c e u n l a r  

Control NAD + -treated 

0 138 140 
2 140 167 
2+Sucrose (0.45M) 141 168 
2+Cycloheximide (100 ~M) 142 165 
18 139 215 

Namalwa cells were cultured at 37°C and 5% CO2 in complete me- 
dium (5X l0 S cells/ml) with 10 mM NAD +. At the end of the 2 h 
incubation with NAD + and cycloheximide, protein synthesis was 90% 
inhibited as determined by TCA-insoluble [35S]Met incorporation. At 
the times indicated, cells were washed, resuspended in PBS with 10 
mM glucose at 10 6 cells/ml and divided into two aliquots: one was 
solubilized by addition of 1% Triton X-100 (solubilized cells), while 
the other received an equal volume of PBS (intact cells). Cyclase 
activity was assayed in both solubilized (total) and intact cells (ecto- 
cellular) with 0.5 mM NGD + as substrate. After 15 and 30 min in- 
cubation with NGD + at 37°C aliquots were withdrawn, deproteinized 
with TCA (5% final concentration), centrifuged and the excess TCA 
removed with diethylether. HPLC analysis was as in [17]. Results are 
the mean of 5 experiments (S.D. --< 12%). 
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Fig. 1. CD38 immunofluorescence of Namalwa cells incubated with 
NAD ~. Namalwa cells (5X 105 cells/ml) were cultured at 37°C and 
5% CO2, as described in Section 2.2, without (control) or with 10 
mM NAD +. After 5 h cells were washed and incubated in 50 /.tg/ml 
IB4 in complete medium for 30 min at 0°C. Thereafter, cells were 
washed and incubated with 50 ~g/ml FITC-conjugated anti-mouse 
IgG in complete medium for 30 min at 0°C, then washed again and 
fluorescence intensity was quantitated by flow cytometry. No fluo- 
rescence was detectable on cells incubated with the second antibody 
only (continuous line). Dotted line, control cells. Dashed line, 
NAD+-treated cells. Results of a typical experiment are shown. 

cubation in the corresponding solubilized cells (total activity) 
obtained with freezing-thawing or Tri ton X-100. The latter 
procedure proved to be more disruptive: thus, the ratios be- 
tween total and ectocellular cyclase activities in control  cells 
were 1.15 + 0.04 (n = 4) and 1.40 + 0.06 (n = 6) for the frozen- 
thawed and the Tri ton X-100-treated cells, respectively. The 
ratio of  total to ectocellular cyclase activity was consistently 
higher in the NAD+- t rea ted  than in the control cells and 
increased with the time of  exposure to N A D  + (Table 1). An 
actually higher intracellular cyclase activity in the cells ex- 
posed to N A D  +, as compared to controls, is demonstrated 
by an increased c A D P R  content, estimated by a sensitive 
and specific R I A  procedure [28]. The relevant levels of  
c A D P R  were 3.13_+0.45 and 1.63_+0.24 pmol/mg protein in 
the perchloric acid extracts from NAD+- t rea ted  cells (2 h) and 
control cells, respectively, following extensive washing of  the 
relevant cell populations. 

The presence of  cycloheximide (100 ~tM) or hyperosmolar  
sucrose (0.45 M), an inhibitor of  clathrin-dependent endocy- 
tosis [29], during incubation of  the cells with N A D  + did not 
exert any significant effect on the changes in the ratio of  total 
to ectocellular cyclase activity (Table 1). 

No  appreciable cyclase activity was detectable in the super- 
natants of  N A D  +- or GSH-treated cells throughout  the incu- 
bation time. This rules out any shedding of  CD38 under these 
conditions [30]. 

3.3. Internalization o f  CD38 
To further confirm internalization of  CD38 in NAD+- t rea t  - 

ed Namalwa  cells, cell surface biotinylation experiments were 
carried out. Thus, after cell biotinylation and subsequent 18 h 
culture in the absence (control) or presence of  10 m M  N A D  +, 
biotin was removed from surface proteins, the cells were sol- 

ubilized and the cell lysates were applied onto immobilized 
streptavidin (see Section 2.4). Supernatants and eluates from 
the affinity purification step, corresponding to ectocellular and 
to internalized, biotinylated proteins, respectively, were ana- 
lyzed both by dot blot and by SDS-PAGE followed by West- 
ern blot. Results are shown in Fig. 2. 

No  CD38 was apparent in the streptavidin eluates from the 
control cell lysates, neither by dot blot (Fig. 2A, dot  2) nor by 
S D S - P A G E  and Western blot (Fig. 2B, lane 2), while CD38 
could be clearly visualized in the streptavidin supernatants by 
dot blot (Fig. 2A, dot  1) and as a 46 kDa  band by SDS- 
P A G E  and Western blot (Fig. 2B, lane 1). These results iden- 
tify CD38 in control cell lysates as the unbiotinylated (i.e. 
membrane-bound)  monomeric  form only. Conversely, the 
streptavidin eluate from NAD+-t rea ted  cell lysates showed a 
strong immunoreactivi ty with the IB4 M o A b  on dot blot 
analysis (Fig. 2A, dot  4), indicating the presence of  biotinyl- 
ated (i.e. internalized) CD38 in the lysates. The absence of  a 
46 kDa  band on S D S - P A G E  and Western blot lane from the 
same sample (Fig. 2B, lane 4) indicates that the internalized 
CD38 was in an aggregated form, unable to enter the poly- 
acrylamide gel [13,16]. Some residual, unbiotinylated (i.e. ec- 
tocellular) and monomeric  CD38 was detectable in the lysates 
of  NAD+- t rea ted  cells both by dot blot (Fig. 2A, dot  3) and 
by S D S - P A G E  (Fig. 2B, lane 3), al though the amount  of  
CD38 was apparently lower than in lysates from control cells. 

Search of  CD38 aggregates in the lysates from NAD+- t rea t  - 
ed cells by means of  density gradient centrifugation (both on 
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Fig. 2. Aggregation and internalization of biotinylated CD38. Na- 
malwa cells were surface biotinylated as described in Section 2.4 
and cultured for 18 h in the absence (control) or presence of 10 
mM NAD +. After removal of surface biotin with a pulse of GSH, 
cells were washed and solubilized. Lysates from control and NAD ÷- 
treated cells were applied to immobilized streptavidin. Resin super- 
natants and eluates were concentrated and each sample was sub- 
jected to dot blot (A) and SDS-PAGE and Western blot (B). Immu- 
nodetection of CD38 was obtained with the IB4 MoAb and ECL. 
Results of a representative experiment are shown. 1, control super- 
natant; 2, control eluate; 3, supernatant from NAD+-treated cells; 
4, eluate from NAD+-treated cells. 
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Fig. 3. Internalization of CD38 via smooth vesicles upon incubation of Namalwa cells with NAD +. a, b, Immunofluorescence staining for 
CD38 of Namalwa cells either untreated (a) or treated for 2 h with 10 mM NAD ~ (b). a: In most control cells CD38 was localized on the out- 
er plasma membrane (arrow), but in a few cells a dot-like intracellular pattern of staining (arrowhead) was also evident, b: After NAD + treat- 
ment the plasma membrane localization disappeared, while all cells showed an intense dot-like intracellular staining (arrowhead). c, d: Ultra- 
structural immunogold localization of CD38 on ultrathin cryosections of Namalwa cells treated for 2 h with 10 mM NAD + revealed the 
presence of smooth vesicles containing gold particles (arrows). Bar: a, 30 ~tm; b, 24 gm; c, 166 nm; d, 110 nm. 

sucrose and  on glycerol) and  of  gel permeat ion  experiments  
followed by dot  b lo t  assays on the individual  fractions,  was 
unsuccessful• The main  reasons for these negative results 
were: (a) interference of  sucrose and  glycerol on the dot  
blot  assays, even following dialysis of  the fract ions;  (b) irre- 
versible adhes ion  of  polymeric CD38 to the gel matrices used 
for gel pe rmea t ion  analyses;  (c) the appa ren t  polydispersi ty of  
CD38 aggregates, in agreement  with  the lack of  discrete oli- 
gomer iza t ion  forms of  the purified self-aggregated glycopro- 
tein [16]. 

In order  to define the pa thway  of  CD38 internal iza t ion 
upon  N A D  + t rea tment ,  we performed immunofluorescence  
and  c ryo immunoe lec t ron  microscopy studies• Fig. 3a shows 

the peripheral  m e m b r a n e  localization of  CD38 in unt rea ted  
control  cells. After  2 h (Fig. 3b) and  6 h (not  shown) of  
exposure to N A D  +, mos t  CD38 disappeared f rom the cell 
m e m b r a n e  and  was found  in a dot ted  pa t te rn  of  s taining with- 
in the cytoplasm, indicat ing a possible vesicular localization. 
However,  when cells were double  immunos ta ined  for CD38 
and  clathrin,  the lat ter  showed a more  diffused and  finely 
dispersed vesicular pa t t e rn  of  s taining (not  shown). After  2 
h exposure of  the cells to N A D  +, and  more  evidently after 6 
h, immunoloca l iza t ion  at  the u l t ras t ruc tura l  level identified 
several CD38-con ta in ing  cytoplasmic smooth  vesicles (Fig. 
3c,d), with an  average d iameter  of  abou t  120-150 nm. These 
vesicles always con ta ined  more  than  one gold particle, indicat- 
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ing a possible clustering mechanism. In contrast, smooth ve- 
sicles containing gold particles were only exceptionally ob- 
served in control Namalwa cells (not shown). 

4. Discussion 

CD38 undergoes extensive aggregation upon incubation 
with either N A D  + or thiol compounds [13,16,17]. The process 
is fast (less than 1 min) with the purified glycoprotein in 
solution, producing large aggregates with no apparent  geome- 
try [13,16], while it is slower in membranes (10-60 rain), prob- 
ably due to impairment  of lateral mobility. CD38 aggregation 
in membranes is accompanied by inability to enter polyacryl- 
amide gels. It takes place in human erythrocytes [17], human 
Molt-4 (a T cell line) and Swiss 3T3 murine fibroblasts trans- 
fected with human  CD38 (E. Zocchi, unpublished). Therefore, 
NAD+-induced aggregation of CD38 seems to be related to 
the structure of the ectocellular region of the human  glyco- 
protein [17] rather than to its membrane environment.  

In this study we obtained biochemical and morphological 
evidence for CD38 internalization in Namalwa B cells incu- 
bated with N A D  +. The NAD+-induced endocytosis, which 
follows aggregation of membrane CD38 (Fig. 2), involves for- 
mat ion of membrane  vesicles (Fig. 3). It does not  take place 
through clathrin-coated pits, as demonstrated by the different 
patterns of staining of CD38 and clathrin, by failure of CD38 
to co-immunolocalize with clathrin by double immunofluores- 
cence staining and by lack of inhibit ion by hyperosmolar su- 
crose. It does not involve any formation of caveolae, because 
these structures are absent in lymphoid cells [31] and, addi- 
tionally, they are insoluble in Tri ton X-100 [32], which con- 
versely disrupts CD38-containing intracellular membrane ve- 
sicles quite efficiently (Table 1). Therefore, it is not yet 
possible to assess the nature of the endocytic vesicles involved 
in the process of NAD+-dependent  CD38 internalization. 

It is worth not ing that internalization of CD38 results in the 
import of  ADP-ribosyl cyclase activity from the cell surface to 
the cytosol. This is demonstrated by the corresponding in- 
crease in cADPR levels in the NAD+-treated over the control 
cells. These findings do not  necessarily contradict the large 
extent of enzyme inactivation by N A D  + and by thiol com- 
pounds that occurs both with purified and with membrane-  
bound  CD38 [13]. Indeed, the complexity of a whole cell with 
respect to purified or reconstructed systems does not  allow an 
obvious comparison between in vitro and in vivo conditions. 
Specifically, in intact cells additional factors can limit enzyme 
inactivation, e.g. smaller aggregates, susceptibility to modula-  
tors, accelerated membrane-cytosol  turnover of polymerized 
CD38. In any case, all the available data indicate that inter- 
nalized CD38 is responsible for the enhanced intracellular 
cyclase activity over that of  control cells. The brief time of 
exposure to N A D  + (2 h) sufficient to elicit the changes in 
subcellular localization, the failure of cycloheximide to inhibit 
this effect under conditions that effectively block protein 
synthesis (Table 1) and the slow turnover of membrane 
CD38 upon removal of N A D  +, are evidence supporting inter- 
nalization rather than de novo synthesis of intracellular 
CD38. 

The present results indicate that extracellular N A D  + could 
represent a hitherto unrecognized means for shifting cADPR 
metabolism from the cell surface to the intracellular compart- 
ment. This possibility would make it possible to reconcile the 

topological paradox of ectocellular localization of CD38 and 
intracellular site of action of its enzymatic product cADPR as 
a calcium mobilizer. Although, as pointed out in [2], endocy- 
tosis is expected to position the internalized CD38 within a 
membrane-bound intracellular vesicle (Fig. 3c,d), this seems 
to be accessible to cytosolic N A D  +, as shown by the increase 
in cADPR levels. It has been speculated that extracellular 
N A D  + might become available to CD38 + lymphoid cells, 
even at transiently elevated concentrations, following apopto- 
sis of  neighboring cells [1,2]. Recently, N A D  + has been de- 
tected for the first time in the interstitial fluid of rat cerebel- 
lum [15], thus adding to ATP [33] as a previously unidentified 
extracellular signal metabolite. GSH, which shows additive 
effects with N A D  + in eliciting CD38 self-aggregation, might 
also be an extracellular ligand resulting from cell lysis and 
cooperating with N A D  + in triggering CD38 internalization 
in responsive cells. 
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