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Abstract RAC-protein kinase (PKBIAkt) has been shown to be 
activated by growth factor stimulation as a downstream target of 
phosphatidylinositol 3-kinase and also by heat shock through a 
pathway independent of phosphatidylinositol 3-kinase. RAC- 
protein kinase was purified by antibody affinity chromatography 
from COS-7 cells transfected with the epitope-tagged expression 
plasmid. The protein kinase activity of RAC-protein kinase 
purified from heat-treated cells was 9-fold higher than the 
enzyme isolated from untreated control cells. Phosphatidylino- 
sitol 3,4,5-trisphosphate did not enhance the activity of RAC- 
protein kinase purified from either heat-treated cells or control 
cells, whereas phosphatidylinositol 4,5-bisphosphate suppressed 
the enzyme isolated from heat-treated cells. These results 
indicate that RAC-protein kinase may interact with phospho- 
inositides, however, it could not be activated by simple association 
with the product of phosphatidylinositol 3-kinase reaction. 
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1. Introduction 

protein kinase having a PH domain and a catalytic domain 
closely related to both cAMP-dependent  protein kinase and 
PKC in its amino- and carboxyl-terminal regions, respectively 
[8-14], has been indicated to be a downstream target of  PI 
3-kinase [15-19]. Namely,  it has been shown that R A C - P K  is 
activated by several growth factors, and that growth factor- 
induced activation of  R A C - P K  is blocked by PI 3-kinase in- 
hibitors and by the expression of  a dominant-negative mutant  
of  PI 3-kinase, and platelet derived growth factor-receptor 
mutants which fail to activate PI 3-kinase are incapable of  
activation of  RAC-PK.  PtdIns(3)P, one of  the products of  
the PI 3-kinase reaction, has been shown to activate directly 
R A C - P K  in vitro and has been suggested to bind to the PH 
domain of  R A C - P K  [15], as PtdIns(4,5)P2 recognizes the hy- 
drophobic pocket of  the PH domain [20]. Very recently, RAC-  
PK has been revealed to be activated by cellular stress such as 
heat shock and hyperosmolarity in a manner  independent of  
PI 3-kinase [21]. Thus, R A C - P K  seems to be regulated by 
distinct mechanisms in signal transducing pathways. In this 
study, the active and inactive forms of  R A C - P K  were purified 
from transfected COS-7 cells to study the mechanism of acti- 
vat ion of  this enzyme. 

Stimulation of  the intrinsic protein tyrosine kinase activity 
of  growth factor receptors by ligand-binding initiates several 
signaling pathways, and one of  these signaling pathways in- 
volves PI 3-kinase, which phosphorylates the hydroxyl group 
at position 3 of  the inositol ring of  phosphoinositides, gener- 
ating Ptdlns(3)P, Ptdlns(3,4)P2 and Ptdlns(3,4,5)P3 [1,2]. 
These phospholipids have been considered to be second mes- 
sengers since any known phospholipase type C can not cleave 
the inositol group with 3-phosphate. In fact, Ptdlns(3,4)P2 
and Ptdlns(3,4,5)P3 have been reported to activate some 
PKC subspecies in vitro [3-7]. Recently, RAC-prote in  kinase 
(RAC-PK,  also named as PKB or Akt), a serine/threonine 
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2. Materials and methods 

2.1. Cells and transfection 
COS-7 cells were maintained in Dulbecco's modified Eagle's me- 

dium supplemented with 10% fetal bovine serum at 37°C in a 5% CO2 
incubator. The expression plasmid of FLAG-epitope tagged RAC- 
PKc~ which contains the cDNA insert of rat RAC-PKc~ in the 
pECE vector was transfected to COS-7 cells by electroporation using 
GENE PULSAR (Bio-Rad). The expression plasmid of dominant 
negative RAC-PKc~ (KI79M) was constructed as described [21]. A 
CHO cell line stably overproducing FLAG epitope tagged RAC- 
PK0t was constructed by using a pRc/CMV vector system (Invitro- 
gen), and maintained in Dulbecco's modified Eagle's medium contain- 
ing 10% fetal bovine serum and proline (35 lag/ml) at 37°C in a 5% 
CO2 incubator. 

2.2. Immunoprecipitation 
The following procedures were carried out at 0-4°C. Cells were 

washed with phosphate-buffered saline, and lysed in 20 mM Tris- 
HCI at pH 7.5 containing 1 mM EDTA, 1 mM EGTA, 10 mM 
2-mercaptoethanol, 1% Triton X-100, 150 mM NaC1, 10 mM NaF, 
1 mM Na3VO4 and 50 ~tg/ml phenylmethylsulfonyl fluoride (lysis 
buffer). After centrifugation for 10 min at 18 000 × g, the supernatant 
(500-600 ~g of protein) was incubated for 1 h with an anti-FLAG 

0014-5793196l$12.00 © 1996 Federation of European Biochemical Societies. All rights reserved. 
P H S 0 0 1 4 - 5 7 9 3 ( 9 6 ) 0 1  120-9  



306 H. Matsuzaki et al./FEBS Letters 396 (1996) 305-308 

monoclonal antibody (1 gg of protein, Kodak Scientific Imaging Sys- 
tems), and then protein A-Sepharose beads (Pharmacia) were added 
to the mixture and incubated for 30 min. The immunoprecipitates 
were collected by centrifugation and washed four times with 20 mM 
Tris-HCl at pH 7.5 containing 150 mM NaCI and 1% Triton X-100. 

2.3. Purification o f  RAC-PKeL 
COS-7 cells were transfected with the expression plasmid of FLAG- 

epitope tagged RAC-PKc~ and cultured for 48 h with 10% fetal bovine 
serum at 37°C. FLAG-epitope tagged RAC-PKc~ was purified either 
from cells treated at 45°C for 20 min or from cells without treatment. 
The purification procedures were carried out at 0M°C. The extract 
from COS-7 cells (1 × 107 cells) was applied to a FLAG M2 affinity 
gel column (0.8×2 cm, Kodak Scientific Imaging Systems) equili- 
brated with lysis buffer without Triton X-100. After extensive wash- 
ing, FLAG-RAC-PK was eluted with 1 ml of 0.1 M glycine-HCI at 
pH 3.0. The eluate was neutralized immediately by adding 20 131 of 
1 M Tris-HCl at pH 8.0, and used for the protein kinase assay. About 
1 lag of purified FLAG RAC-PKc~ per 10 cm dish of confluent COS-7 
cells was obtained by these purification methods. The enzyme ob- 
tained was stable for at least 1 week when stored at 04°C.  

2.4. Protein kinase assay 
The core histone fraction (a mixture of H2A, H2B, H3, and H4 

histones) prepared from calf thymus was employed for the routine 
assay for RAC-PK. The reaction mixture (25 gl) containing 20 mM 
Tris-HCl at pH 7.5, 10 mM MgCI2, 20 mM ATP, 15-50 kBq of 
[y-3ZP]ATP, 200 gg/ml core histone and the enzyme fraction was in- 
cubated for 30 min at 30°C. After boiling in SDS sample buffer, 
phosphorylated proteins were separated by SDS-PAGE, and the 
radioactivity of protein bands was determined using a Bio-imaging 
Analyzer BAS2000 (Fuji). When immunoprecipitated enzyme was em- 
ployed, the immunoprecipitates were washed before the protein kinase 
assay with 20 mM Tris-HCl at pH 7.5 containing 1 mM EDTA, 1 mM 
EGTA, 10 mM 2-mercaptoethanol, 150 mM NaC1 and 50 gg/ml 
phenylmethylsulfonyl fluoride at 0~,°C to remove Triton X-100, 
NaF and Na3VO4. Autophosphorylation of RAC-PKc~ was moni- 
tored by the phosphorylation reaction without exogenous phosphate 
acceptor proteins. Where indicated, PtdIns(4,5)P2 (bovine brain, 
Boehringer Mannheim) and PtdIns(3,4,5)P3 (fatty acid moieties are 
palmitate, C16:0) [22] dissolved in water by vigorous mixing were 
added to the reaction mixture. 

2.5. Immunoblot analysis" 
After boiling in SDS sample buffer, and proteins were separated by 

SDS-PAGE and transferred onto an Immobilon P membrane (Milli- 
pore), lmmunoblot analysis was carried out using the polyclonal anti- 
body against RAC-PKc~ as the first antibody and the alkaline phos- 
phatase-conjugated anti-rabbit second antibody (Promega) as 
described [13]. 

3. Results and discussion 

The effects of  growth  factor  signal and  heat  shock on  RAC-  
P K  were studied in serum-starved cells such as COS-7 cells 
t ransient ly  expressing the FLAG-ep i tope  tagged RAC-PKc~ 
and  C H O  cells stably overproduc ing  the enzyme (Fig. 1). In 
the previous  study using C H O  cells expressing the wild type of  
RAC-PKcq  RAC-PKc~ was act ivated by heat  shock but  no t  
by serum [21]. After  p ro longed  serum starvat ion,  t rea tment  
with fetal bovine  serum induced act ivat ion of  R A C - P K  in 
C H O  cells overproducing  the enzyme (Fig. 1B). It  is no t  clear 
why C H O  cells expressing the wild-type and  epitope-tagged 
enzymes show different responses, however,  serum-induced 
act ivat ion of  R A C - P K  might  depend on the amount s  of  en- 
zyme expressed in C H O  cells, since the expression of  the epi- 
tope- tagged RAC-PKc~ is lower than  tha t  of  the wild-type 
enzyme. Thus,  the effects of  serum and heat  t rea tment  were 
compared  employing COS-7 cells and  C H O  cells. Ei ther  
serum or heat  shock act ivated RAC-PK,  and  the serum stim- 
ula t ion and  heat  shock were not  addit ive for act ivat ion of  
R A C - P K  (Fig. 1A,B). A l though  serum and  heat  t rea tment  
act ivate R A C - P K  in different manners ,  it is difficult to distin- 
guish the effects of  serum st imulat ion and  heat  shock since 
heat  shock induces act ivat ion of  R A C - P K  in cells cul tured in 
the presence of  serum [21]. Fur the rmore ,  act ivat ion of  RAC-  
P K  has  been demons t ra ted  using immunoprec ip i ta ted  en- 
zymes tha t  might  con ta in  o ther  mater ia ls  tha t  could regulate 
the enzyme activity [15-20]. Thus,  R A C - P K  was purified to 
s tudy the molecular  mechan ism of  ac t ivat ion of  RAC-PK.  
The epi tope-tagged RAC-PKc~ was isolated f rom COS-7 cells 
t ransfected with the expression plasmid and  cultured in the 
presence of  fetal bovine  serum by using affinity chromatogra -  
phy on the resin coupled with a monoc lona l  an t ibody  to the 
F L A G  epitope (Fig. 2). R A C - P K  was purified to appa ren t  
homogene i ty  f rom the heat - t rea ted  cells and  control  cells 
(Fig. 2A). The enzyme purified f rom heat- t rea ted cells wi thout  
any obvious  associat ing proteins  showed a much  higher  en- 
zyme activity than  tha t  purified f rom unt rea ted  control  cells 
(Fig. 2B). The kinase-negat ive R A C - P K  (K179M) was also 
purified using the same procedures,  and  the enzyme prepara-  
t ions isolated f rom b o t h  the heat - t rea ted and  control  cells did 
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Fig. I. Activation of RAC-PKo~ in COS-7 and CHO cells. Cells were treated as indicated and RAC-PKc~ was immunoprecipitated by the anti- 
FLAG antibody. Protein kinase activity measured by using core histone as substrate is shown in the upper panel. The amounts of RAC-PKc~ 
in the immunoprecipitates are shown by immunoblot analysis in the lower panels. Cells treated at 45°C for 20 min, with 10% fetal bovine 
serum for 20 min, and without treatment are indicated as (hs), (+), and ( ), respectively, above the upper panel. The positions of RAC-PKa 
and phosphorylated histone are indicated by arrows. (A) COS-7 cells. Cells were transfected with the expression plasmid of FLAG-epitoped 
tagged RAC-PKe~, cultured for 24 h, serum-starved for 12 h, and treated as indicated. (B) CHO cells. Cells overproducing FLAG-epitope 
tagged RAC-PKc~ were serum-starved for 24 h, and treated as indicated. 
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Fig. 2. RAC-PKc~ purified from transfected COS-7 cells. FLAG-epi tope tagged RAC-PKc~ was purified from cells without treatment or from 
cells treated at 45°C for 20 min. (A) Purification of  RAC-PKc~. Purified RAC-PKot (0.2 p.g) was applied on SDS-PAGE and stained with Coo- 
massie brilliant blue (left panel) and immunoblot ted  with the an t i -RAC-PK antibody (right panel). Lanes 1,2: RAC-PKc~ purified from un- 
treated and heat-treated COS-7 cells, respectively. The positions of size markers are indicated in kDa, and the position of  RAC-PKc~ is indi- 
cated by an arrow. (B) Protein kinase activity of  RAC-PKcc. Purified RAC-PKc~ (0.1 gg) was employed to measure protein kinase activity by 
autophosphorylat ion (lanes 1,2) and by using core histone as substrate (lanes 3,4). Lanes 1,3: RAC-PKc~ purified from untreated cells; lanes 
2,4, R A C - P K ~  purified from heat-treated cells. The positions of  RAC-PKc~ and phosphorylated protein are indicated by arrows. 
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Fig. 3. Effects of  Ptdlns(4,5)P2 and Ptdlns(3,4,5)P3 on purified RAC-PK~.  R A C - P K ~  purified from COS-7 cells without treatment and from 
heat-treated cells was assayed by using core histone as substrate in the presence of  various concentrations of  PtdIns(4,5)P2 and PtdIns(3,4,5)P3. 
(A) Autoradiography of  the phosphorylat ion of  core histone. RAC-PKc~ was assayed in the presence of PtdIns(4,5)P2 (upper half) and 
Ptd|ns(3,4,5)P3 (lower half). PtdIns(4,5)P2 and Ptdlns(3,4,5)P3 are shown as PIP2 and PIP3, respectively. RAC-PKot purified from cells without 
treatment and from heat-treated cells are denoted ( - )  and (hs), respectively. The positions of phosphorylated core histone are indicated by ar- 
rows. (B) Quanti tat ion of  the results of  A. Circles and triangles indicate the enzyme purified from cells with and without heat-treatment,  respec- 
tively. Open and closed symbols correspond to the activity in the presence of  PtdIns(3,4,5)P3 and PtdIns(4,5)P2, respectively. The -fold stimula- 
tion of  the RAC-PKcc activity relative to the enzyme purified enzyme from untreated cells is shown. 
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not show detectable enzyme activity, confirming that the en- 
zyme preparations obtained in these experiments are free from 
other protein kinases (data not shown). It has been reported 
that R A C - P K  activated by serum in Swiss 3T3 cells is phos- 
phorylated on serine and threonine residues and shows de- 
creased mobility on SDS-PAGE,  and phosphatase treatment 
of  the immunoprecipi tated R A C - P K  from stimulated cells 
changes electrophoretic mobili ty and results in the reduction 
of  kinase activity to the basal level [19]. R A C - P K  purified 
from heat-treated and control cells cultured in the presence 
of  serum showed the same mobili ty on SDS-PAGE as judged 
by protein staining and immunoblot  analysis (Fig. 2A). It is 
not clear why the active enzyme obtained from heat-shocked 
cells in this study does not show a different mobility from the 
inactive enzyme. It might be possible that serum enhances the 
phosphorylat ion of  R A C - P K  whereas heat shock activates the 
enzyme without phosphorylat ion of  RAC-PK.  

R A C - P K  has been indicated to be a downstream target of  
PI 3-kinase, and PtdIns(3)P, a product of  the PI 3-kinase 
reaction, has been shown to activate the enzyme, presumably 
by associating with the PH domain of  R A C - P K  [15]. On the 
other hand, it has been reported that R A C - P K  binds to 
PtdIns(3,4,5)P3 and Ptdlns(3,4)P2, however, PtdIns(3)P is in- 
ert for the binding, and furthermore, the interaction of  RAC-  
PK with PtdIns(3,4,5)P3 and PtdIns(3,4)P2 does not  activate 
the kinase activity [23]. Thus, the effect of  PtdIns(3,4,5)P3 was 
studied using R A C - P K  purified from transfected COS-7 cells 
(Fig. 3). PtdIns(3,4,5)P3 did not activate the enzyme isolated 
from control cells. RAC-PK,  activated approx. 9-fold by heat 
shock through a pathway independent of  PI 3-kinase, was not 
enhanced by PtdIns(3,4,5)P3, either, and rather inhibited by 
Ptdlns(4,5)P2 at higher concentrations. PtdIns(4,5)P2 had no 
effect on the enzyme activity isolated from control cells. These 
results indicate that R A C - P K  is not activated by the simple 
association with PtdIns(3,4,5)P3, however, PtdIns(4,5)P2 
could associate with the PH domain of  RAC-PK.  It is still 
not known how R A C - P K  is activated by stress. Further  stud- 
ies are necessary to elucidate the molecular mechanisms of  
activation of  R A C - P K  through different signaling pathways. 
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