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Inhibition of ICE-family cysteine proteases rescues murine lymphocytes 
from lipoxygenase inhibitor-induced apoptosis 
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Abstract Two lipophilic derivatives of eaffeic acid which inhibit 
lipoxygenase, caffeic acid phenethyl ester (CAPE) and N,N'- 
dicyclohexyl-O-(3,4-dihydroxycinnamoyl)-isourea (DCHCU) ,  
reduced the proliferative response of murine splenocytes to 
concanavalin A in vitro. Both CAPE and DCHCU induced 
apoptosis in murine thymocyte cultures as verified by flow 
cytometry and by visualisation of DNA with acridine orange 
staining. CAPE-induced apoptosis was inhibited by z-VAD-fmk, 
an inhibitor of the interleukin-l[~-converting enzyme family of 
cysteine proteases. We suggest that the lipoxygenase pathway of 
arachidonic acid metabolism plays a role in regulating lympho- 
cyte responses such as proliferation and apoptosis. 
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1. Introduction 

widely used as a folk medicine. We have found that both 
C A P E  and D C H C U  inhibit mammalian lipoxygenases: they 
potently suppress eicosanoid production by human neutro- 
phils and mouse macrophages in vitro and during acute peri- 
toneal inflammation in vivo [13]. In addition, it has been 
reported that C A P E  induces differential growth inhibition of  
cancer cells compared with normal cells [14], and modulates 
oxidative stress in several systems [15,16]. To evaluate the 
effect of  CAPE and D C H C U  on lymphocyte functions, their 
action together with that of  propolis and quercetin (a flavo- 
noid component  of  propolis) on two alternative responses was 
investigated cell proliferation and apoptosis. We found that 
both CAPE and D C H C U ,  used at concentrations selective for 
mammalian  lipoxygenases, cause time-dependent inhibition of  
the proliferative response and induce apoptotic cell death in 
murine lymphocytes. CAPE-induced apoptosis was prevented 
by an inhibitor of  the ICE-family of  cysteine proteases, Z-Val- 
Ala-Asp-fluoromethylketone ( zVAD-fmk) .  

Arachidonate  metabolism via the lipoxygenase (LOX) path- 
way leads to the formation of  hydroxy fatty acids, leuko- 
trienes, lipoxins and other products. The importance of  these 
metabolites in normal physiological responses as well as in 
various pathophysiological conditions such as hypersensitivity 
and inflammation is widely recognised [1,2]. LOX-derived ei- 
cosanoids have been shown to regulate the production and 
action of  some cytokines including interferons [3], to regulate 
natural killer cell activity [4], to induce growth-related signals 
and to regulate cell proliferation [5,6]. Eicosanoids are in- 
volved in thymocyte maturat ion and/or differentiation and 
they modulate  the activity of  thymus-dependent lymphocytes 
[7]. Many pharmacological  agents have been developed that 
inhibit the generation of  eicosanoids with different potency 
and selectivity [8,9]. Screening of  natural products has re- 
vealed a wide variety of  phenolic compounds that inhibit 
LOX, mainly through redox mechanisms [10]. 

Our previous investigations have shown that two lipophilic 
derivatives of  caffeic acid, caffeic acid phenethyl ester (CAPE) 
and an intermediate in its chemical synthesis, N,N'-dicyclo- 
hexyl-O-(3,4-dihydroxycinnamoyl)-isourea ( D C H C U )  (see 
Scheme 1), are antioxidants which inhibit plant 5- and 15- 
lipoxygenases [11,12]. C A P E  is a biologically active ingredient 
of  honeybee propolis, a natural product which has been 
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2. Materials and methods 

2.1. Reagents 
Zymosan, RPMI-1640, concanavalin A (ConA), glutamine, fetal 

calf serum (FCS) and antibiotics were obtained from Sigma Chemical 
Co. (Poole, Dorset, UK). CAPE and DCHCU were synthesised in the 
A.N. Belozersky Institute of Physico-Chemical Biology (Moscow, 
Russia) by Drs. G.A. Korshunova and N.V Sumbatyan by the meth- 
od described elsewhere [12]. The ethanol extract of propolis (EEP) was 
obtained from Bee Health Ltd. (Scarborough, Yorks, UK). Benzyl- 
oxycarbonyl-valinyl- alaninyl- aspartyl(O-methyl)-fluoromethylketone 
(zVAD-Jmk) was supplied by Enzyme Systems Products Inc. (Dublin, 
CA, USA). The stock solution of zVAD-J~nk (50 mM in DMSO) was 
kept at -20°C and final dilutions were made immediately prior to use. 
Colorimetric cytotoxicity assay kits were from Proteins International 
Inc. (Rochester Hills, MI, USA) 

2.2. Animals 
Male C57BL6 mice, aged 8 10 weeks, were bred and housed in the 

Department of Biochemistry, University of Oxford. Mice were al- 
lowed access ad libitum to standard laboratory chow (SDS No. 1; 
Special Diet Services, Witham, Essex, UK) and water. 

2.3. ProliJeration and viability assay 
Mouse splenocytes were isolated and cultured as described else- 

where [17]. Briefly, cells (2.5× 10 ° cells/ml) were cultured in RPMI- 
1640 medium supplemented with 10% (v/v) FCS, 2 mM glutamine and 
antibiotics and incubated in a 5% CO2 atmosphere at 37°C. Cells were 
activated by incubation with 5 lag/ml of ConA in the presence of the 
inhibitors (added 5 min before the stimulation) or of the equivalent 
amount of ethanol for 648 h. [:~H]Thymidine (0.2 ~tCi/well) was 
added during the last 18 h of the culture and the cells were harvested 
into glass fibre filters, processed and counted in a [3-counter. The 
cultures were established in triplicate and the results are expressed 
as % of thymidine incorporation into control cells. Cell viability 
was assessed by measuring lactate dehydrogenase (LDH) activity re- 
leased into the medium, using the colorimetric cytotoxicity assay kits 
according to the instructions of the manufacturer. 
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2.4. Detection of apoptosis 
Apoptosis of murine thymocytes was quantified by flow cytometry 

using a Becton Dickinson FACScan analyser as described elsewhere 
[18]. Apoptotic thymocytes were identified by their lower forward 
light scatter (due to cell shrinkage) and higher side scatter (due to 
increased granularity of the cell) than their viable counterparts [19]. 
Briefly, mouse thymocytes (2.5 × 106 cells/ml) were cultured in 24-well 
plates for different times in the presence or absence of ConA and the 
inhibitors. They were then washed twice with phosphate-buffered sa- 
line (PBS), fixed in PBS containing 1% formaldehyde, 0.5% BSA and 
0.03% NaNa and kept at 4°C until analysis. The percentage of apop- 
totic and viable cells was quantified by FACScan; for a viable control 
cell population freshly prepared, non-cultured cells were used. 

Confirmation that thymocyte cell death was by apoptosis was pro- 
vided by visualisation of DNA with acridine orange staining as de- 
scribed elsewhere [20]. 

3. Resu l t s  

3.1. Assay of  lymphocyte proliferation and viability 
The effects of  CAPE,  D C H C U ,  quercet in and  E E P  on 

ConA- induced  prol i fera t ion of  mur ine  spleen lymphocytes,  
as assessed by [3H]thymidine incorpora t ion ,  were invest igated 
(Fig. 1). All four agents  inhibi ted the proliferat ive response in 
a dose-dependent  fashion (Fig. 1). C A P E  had  the mos t  potent  
ant iprol i ferat ive effect: it caused 50% inhibi t ion of  
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Scheme 1. Chemical formulae of CAPE and DCHCU. 

[3H]thymidine incorpora t ion  at  a concen t ra t ion  of  abou t  2.5 
p M  after  24 h of  incubat ion.  The same effect of  D C H C U  and 
quercet in was displayed at concent ra t ions  5 and  15 gM,  re- 
spectively. EEP  completely abol ished [3H]thymidine incor -  
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Fig. l. Inhibition of splenocyte proliferation as determined by [3H]thymidine incorporation. Spleen cells were activated with ConA and cultured 
in the absence or presence of CAPE (a), DCHCU (b), quercetin (c) or propolis (d) for 24 (O) or 48 ( i )  h. The percentage inhibition of 
[3H]thymidine incorporation was determined as the mean cpm of treated cells divided by that of untreated (control) cells. The results are the 
mean_+ S.E.M. of 3 5 independent experiments; *significant difference from untreated cells P <  0.05, **P< 0.01 (one-way ANOVA). 
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poration at a concentration of 100 jag/ml but at concentra- 
tions less than 50 gg/ml did not significantly affect prolifera- 
tion. The effect of all agents was greater after 48 h of incuba- 
tion than after 24 h (Fig. 1). The analysis of cell viability 
revealed that the culture of splenocytes with 3 /aM CAPE or 
5 jaM DCHCU for 48 h resulted in a substantial cell lysis (up 
to 50% of the cells were lysed). At concentrations of more 
than 1.5 /aM CAPE was toxic, causing lysis of 10 20'7,, of 
the cells in a dose-dependent manner after 24 h. DCHCU 
did not induce cell lysis after 24 h. Neither quercetin nor 
propolis caused cell lysis. 

3.2. Apoptosis assay 
Apoptotic cell death was observed in murine lymphocytes 

cultured in the presence of CAPE and DCHCU. The apopto- 
tic effect of all agents was similar upon thymocytes and sple- 
nocytes (data not shown); further data for thymocytes only 
are shown. When thymocytes were incubated with CAPE or 
DCHCU, the proportion of apoptotic cells increased with 
time (Fig. 2; DCHCU data not shown). A difference between 
spontaneous and CAPE-induced apoptosis was apparent after 
12 h and was most significant at 24 h of incubation (Fig. 2). 
After a 36-h culture period the proportion of apoptotic cells 
did not differ between CAPE-treated and -untreated cultures 
(Fig. 2). Both CAPE and DCHCU induced apoptosis of thy- 
mocytes in a concentration-dependent manner (Fig. 3). The 
minimal concentration of CAPE significantly affecting apop- 
tosis was 1 gM and that of DCHCU was 10 gM after 12 h of 
treatment with the compounds. After 24 h of incubation with 
1 /aM CAPE or 3 /aM DCHCU about 50% of thymocytes 
were apoptotic; at higher concentrations of both compounds 
no further increase in the percentage of apoptotic cells was 
observed (Fig. 3). Quercetin did not induce apoptosis at the 
concentrations at which it affected proliferation (7-10 /aM; 
data not shown). In the presence of 50-100 /ag/ml of EEP 
50% of thymocytes in culture underwent apoptosis (data not 
shown). Since EEP is a complex mixture of many biologically 
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Fig. 2. The time-course of spontaneous (D) or CAPE-induced apop- 
tosis (m) (2.5 gM CAPE) of murine thymocytes. The results are the 
mean+S.E.M, from triplicate cultures and 2 independent experi- 
ments; *significant difference from spontaneous apoptosis, P< 0.05, 
**P < 0.01 (one-way ANOVA). 
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Fig. 3. Dose-dependent effect of CAPE (a) and DCHCU (b) on 
apoptosis of thymocytes cultured for 12 (e) or 24 (m) h. *Significant 
difference from spontaneous apoptosis, P<0.05, **P<0.01 (one- 
way ANOVA). 

active compounds it is not clear whether this apoptotic effect 
was due to the presence of CAPE and/or other cytotoxic 
agents. We examined cell cultures which were non-activated 
or activated with ConA. We did not observe a significant 
difference in the proportion of apoptotic cells in the presence 
or in the absence of ConA, although the proportion of viable 
cells was less in ConA-activated cultures. Therefore, we pre- 
sent here the results obtained in the absence of ConA since 
this allows clearer interpretation of the quantitative apoptosis 
rate. 

3.3. Effect of  ICE-cysteine protease inhibition on 
CAPE-induced apoptosis 

The new and growing family of interleukin-lJ3-converting 
enzyme (ICE) cysteine proteases are now recognised to be 
major effectors of cellular death by apoptosis [21]. We exam- 
ined the effect of zVAD-fmk, an irreversible, cell-permeable 
inhibitor of ICE family cysteine proteases [22], on CAPE-trig- 
gered apoptosis. At a concentration of 100 /aM zVAD-fmk 
reduced CAPE-induced apoptosis such that the level of apop- 
tosis was the same as that of the control cells (Fig. 4). The 
same treatment of control cells with zVAD-fmk did not result 
in significant inhibition of spontaneous apoptosis (data not 
shown). These data suggest that CAPE-triggered apoptosis 
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Fig. 4. FACScan dot-plot light scatter profiles of  mouse thymocytes at a concentration of 2 .5× 106 cells/ml. Data  are shown for non-cultured 
(a), cultured (b), cultured with 2.5 gM  CAPE (c) or cultured with 2.5 I.tM CAPE and 100 pM z - V A D - f m k  (d) cells after 24 h. The viable popu- 
lation contains cells with relatively high forward-scatter and low side-scatter properties• Cells undergoing apoptosis appear in the low-forward- 
scatter/high-side-scatter zone. The results of  one experiment, representative of  four, are shown• 

is d e p e n d e n t  o n  the  ac t iv i ty  o f  m e m b e r s  o f  t he  I C E  f ami ly  o f  

cys t e ine  p ro t ea se s .  

4. D i s c u s s i o n  

W e  h a v e  s h o w n  he re  t h a t  t wo  caffeic ac id  de r iva t ives  w h i c h  

are  L O X  inh ib i t o r s ,  D C H C U  a n d  C A P E  (a n a t u r a l  c o m p o -  

n e n t  o f  p ropo l i s ) ,  h a v e  an t i p ro l i f e r a t i ve  a c t i o n  o n  n o r m a l  

m u r i n e  l y m p h o c y t e s .  F l o w  c y t o m e t r y  r evea led  t h a t  o n e  corn-  

p o n e n t  o f  t he  r e d u c t i o n  in the  p ro l i f e ra t ive  r e s p o n s e  w a s  an  

a u g m e n t a t i o n  o f  a p o p t o s i s .  C A P E - i n d u c e d  a p o p t o s i s  was  
b l o c k e d  by  a n  i n h i b i t o r  o f  I C E - p r o t e a s e s ,  z V A D - f m k ,  

a l t h o u g h  s p o n t a n e o u s  a p o p t o s i s  w a s  r e s i s t a n t  to  th i s  inh ib i -  

tor .  T h e s e  d a t a  p r o v i d e  ev idence  t h a t  an  I C E - r e l a t e d  p ro -  
tease(s )  a re  r e q u i r e d  for  C A P E - t r i g g e r e d  a p o p t o s i s :  z V A D -  

f m k  h a s  been  s h o w n  to  inh ib i t  p r o c e s s i n g  a n d  t h u s  ac t i v a t i o n  

o f  t he  I C E - f a m i l y  m e m b e r  C P P 3 2 / Y a m a  [23,24]. 

T h e  resu l t s  o f  o u r  s t u d y  a re  in a g r e e m e n t  w i th  t he  w o r k  o f  
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Chiao et al. [15], reporting that C A P E  causes growth arrest in 
non-tumorigenic rat embryo fibroblasts (CREF)  and apopto-  
tic death in the virally transformed C R E F  cells (Wt3A). It 
was suggested that C A P E  altered the redox state of  the cells 
and that CAPE-tr iggered apoptosis in Wt3A cells was asso- 
ciated with their reduced oxidant defences [15]. However,  as 
we have shown previously, C A P E  and D C H C U  are antiox- 
idants: they inhibit the production of  reactive oxygen species 
(ROS) by human neutrophils and in a cell-free xanthine- 
xanthine oxidase system to at least as great an extent as the 
other antioxidant LOX inhibitors, such as N D G A  and caffeic 
acid [11,12]. It seems unlikely therefore that CAPE-  and 
DCHCU- induced  apoptosis can be explained simply as a re- 
sult of  the redox imbalance causing increased ROS produc- 
tion. The concentrations of  C A P E  and D C H C U  which in- 
duced antiproliferative and apoptot ic  effects were similar to 
the concentrations which inhibit LOX in mouse macrophages 
(the ICs0s of  C A P E  and D C H C U  were about 0.5 and 0.8 p.M, 
respectively) [13]. There is now increasing evidence of  the 
possible involvement of  lipoxygenases and their products in 
the regulation of  cell growth and death. For  example, inhibi- 
tion of  5-LOX metabolism resulted in significant reduction in 
the growth of  a number of  lung cancer cell lines [25] and 5- 
LOX inhibitors such as 5,8,11,14-eicosatetraynoic acid, 
A63162 and SC41661A reduced the proliferation of  chronic 
myelogenous leukaemia blast cells, induced their differentia- 
tion and promoted apoptosis in promyelocytic cells [26]. It 
was recently reported that the 12-LOX and probably the 15- 
and/or  5-LOX arachidonate pathways may function as critical 
regulators of  cell survival and apoptosis in rat Walker 256 
(W256) carcinosarcoma cells [27]. Selective 12-LOX inhibitors 
(BHPP, baicalein and CDC)  and general LOX inhibitors (ETI 
and N D G A )  induced W256 cell apoptosis [27]. 

Thus, the current results along with those of  previous stud- 
ies indicate that C A P E  and D C H C U  modulate cell prolifera- 
tion and apoptosis not  due to their redox properties but 
rather due to their anti-lipoxygenase activity. It is not certain, 
however, whether their effects resulted from specific 5-LOX 
inhibition or  from inhibition of  other LOX enzymes, or 
whether some other mechanisms may be involved. 
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