
FEBS 17686 FEBS Letters 396 (1996) 257-260 

Substrate specificity and mode of action of acetylxylan esterase from 
Streptomyces lividans 

P. Biely a,*, G.L. C6t6 b, L. Kremnick) a, R.V. Greene b, C. Dupont c, D. Kluepfel c 
~Institute of  Chemistry, Slovak Academy of  Sciences, 84238 Bratislava, Slovak Republic 

bBiopolymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of  
Agriculture, Peoria, 1L, USA 

Clnstitut Armand-Frappier, Universitk du Qubbec, Ville de Laval, Qubbec, Canada 

Received 21 August 1996; revised version received 17 September 1996 

Abstract The substrate specificity of purified acetylxylan 
esterase (AcXE) from Streptomyces lividans was investigated 
on partially and fully acetylated methyl glycopyranosides. The 
enzyme exhibited deacetylation regioselectivity on model com- 
pounds which provided insights pertaining to its function in 
acetyixylan degradation. The enzyme catalyzed double deacetyl- 
ation of methyl 2,3,4-tri-O-acetyl-l~-l)-xylopyranoside and 
methyl 2,3,4,6-tetra-O-acetyl-~o-glucopyranoside at positions 
2 and 3. Two methyl xylopyranoside diacetates, which had a free 
hydroxyl group at position 2 or 3, i.e. the derivatives that most 
closely mimic monoacetylated xylopyranosyl residues in acetyl- 
xylan, were deacetylated 1 to 2 orders of magnitude faster than 
methyl 2,3,4-tri-O-acetyi-~o-xylopyranoside and methyl 2,3-di- 
O-acetyl-~D-xylopyranoside. These observations explain the 
double deacetylation. The second acetyl group is released 
immediately after the first one is removed from the fully 
acetylated methyl ~o-xylo-  and -glucopyranoside. The results 
suggest that in acetylxylan degradation the enzyme rapidly 
deacetylates monoacetylated xylopyranosyl residues, but attacks 
doubly acetylated residues much more slowly. Evidence is also 
presented that the St. lividans enzyme could be the first real 
substrate-specific AcXE. 
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to the action of  AcXE from Schizophyllum commune on par- 
tially and fully acetylated methyl glycosides [5] revealed that 
the pattern of  deacetylation of  the substrates is compatible 
with the function of  the enzyme in hemicellulose degradation. 
Specifically, in the glycosides, the S. commune enzyme most 
rapidly deacetylated the 3 position and then the 2 position, to 
give 2,4-di- and 2- and 4-monoacetyl  derivatives from Me-~- 
Xylp. Likewise, 2,4,6-tri-O-Ac-Me-[3-Glcp and 4,6-di-O-Ac- 
Me-[3-Glcp were the principal products from 2,3,4,6-tetra-O- 
Ac-Me-~-Glcp. The enzyme also catalyzed double 2,3-deace- 
tylation of  2,3,4,6-tetra-O-Ac-Me-[3-Manp in a highly selective 
way. The ability of  the AcXE from S. commune to deacetylate 
the mannopyranoside and acetylgalactomannan suggested 
that the enzyme may not be an AcXE but rather a more 
general polysaccharide or carbohydrate deacetylase. 

In the present work we report results of  a similar study 
regarding the AcXE from Streptomyces lividans. Several prop- 
erties of  this esterase differed from those of  the S. commune 
enzyme. In contrast to the S. commune enzyme, AcXE of  St. 
lividans shows no activity on non-carbohydrate  esters, and its 
molecule contains an amino acid sequence which appears to 
be identical with the xylan-binding domain encountered in an 
St. lividans endo-~-l ,4-xylanase [6,7]. 

2. Materials and methods 

I. Introduction 

Acetylxylan esterases (AcXEs) are microbial enzymes that 
liberate acetic acid from partially acetylated 4-O-methyl-o- 
glucuronoxylan, the main hardwood hemicellulose [1-3]. 
Al though a considerable number  of  these enzymes have 
been found in various microbial  cellulolytic and hemicellulo- 
lytic systems [4], little is known about  their mode of  action 
and substrate specificity. Our recent investigation pertaining 
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2.1. Enzyme 
The investigated AcXE is produced by a genetically modified strain 

of St. lividans IAF43, which overproduces the esterase together with 
xylanase B [6]. The AcXE was purified from xylose-spent culture 
medium as described by Dupont et al. [7]. 

2.2. Enzyme assay 
Activity of AcXE was determined on acetylxylan by measuring the 

release of acetic acid [7]. One unit is defined as the amount of enzyme 
needed to release 1 ~tmol of acetic acid in 1 min. 

2.3. Carbohydrates 
Fully acetylated methyl glycopyranosides were obtained as de- 

scribed [5]. Diacetates (2,3-, 2,4- and 3,4-) of methyl 13-D-xylopyrano- 
side were generous gifts from Dr. P. Kovac (National Institutes of 
Health, Bethesda, MD, USA), Dr. J. Hirsch (Institute of Chemistry, 
Slovak Academy of Sciences, Bratislava, Slovakia) and Dr. A. Fer- 
nandes-Mayoralas (Instituto de Quimica Organica General, CSIC, 
Madrid, Spain). 

2.4. Enzymic deacetylations 
Reactions were performed in homogeneous solutions containing 0.1 

M sodium phosphate buffer (pH 6.0) at 40°C. Concentrations of 
substrates were as follows: methyl 2,3,4-tri-O-acetyl-13-D-xylopyrano- 
side, 14.5 mM; methyl 2,3,4,6-tetra-O-acetyl-~-D-glucopyranoside, 
10.4 mM; methyl 2,3-, 2,4- and 3,4-di-O-acetyl-~-o-xylopyranosides, 
all 15 mM. After the addition of prewarmed enzyme solution, aliquots 
were taken periodically and subjected to product analysis. 
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2.5. Analysis of  reaction mixtures and identification of  products 
Enzymic deacetylations of methyl O-acetyl-D-glycopyranosides were 

followed by GLC after conversion of reaction products to their tri- 
methylsilyl ethers [5]. Reaction mixtures were also analyzed by TLC 
on silica gel 60 (Merck) in ethyl acetate-benzene-2-propanol (2:1:0.1, 
v/v). The sugars were visualized with N-(1-naphthyl)ethylenediamine 
dihydrochloride reagent [8]. Deacetylation products from various 
methyl glycopyranosides were identified by GLC-MS and NMR spec- 
troscopy as described earlier [5]. 

3. Results 

3.1. Action o f  A c X E  on methyl  per-O-acetyl-D-glycosides 
At enzyme concentrations (0.1 1 U/ml) sufficient to observe 

rapid deacetylation of beechwood acetylxylan (precipitation of 
deacetylated polysaccharide), the St. lividans AcXE appears to 
be almost inactive on fully acetylated methyl glycopyrano- 
sides. Unusually high enzyme concentrations (50-100 U/ml) 
were required to observe a relatively fast deacetylation of 
2,3,4-tri-O-Ac-Me-13-Xylp, the compound structurally closely 
related to doubly acetylated xylopyranosyl residues in acetyl- 
xylan. It was necessary to keep the rate of enzymic deacetyla- 
tion high enough to circumvent the effect of spontaneous 
migration of acetyl groups in partially deacetylated products 
[5]. As shown in Fig. 1, AcXE catalyzed conversion of 2,3,4- 
tri-O-Ac-Me-13-Xylp, essentially in one step, to 4-O-Ac-Me-13- 
Xylp and in a very high yield (,-~ 70%). Theoretical intermedi- 
ates of the double deacetylation, 2,4- or 3,4-di-O-Ac-[3-Xylp, 
were not observed in the reaction mixture. The only detected 
diacetate was 2,3-di-O-Ac-Me-13-Xylp, and this was produced 
in a low concentration. Apparently, the removal of the acetyl 
group from the 4-position resulted in the formation of a dia- 
cetate which was also a poor enzyme substrate and, therefore, 
persisted in the reaction mixture. Similarly, further conversion 
of 4-O-Ac-Me-~-Xylp to a completely deacetylated product is 
very slow (Fig. 1) indicating that AcXE can only weakly hy- 
drolyze the acetyl group in position 4. 

The AcXE exhibited essentially identical regioselectivity to 
that above towards 2,3,4,6-tetra-O-Ac-Me-13-Glcp. The en- 
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Fig. 1. Time course of 2,3,4-tri-O-Ac-Me-13-Xylp (14.5 mM) deacety- 
lation by AcXE from St. lividans (75 U/ml) as evaluated by gas 
chromatography of trimethylsilyl ethers. ((3) 2,3,4-Tri-O-Ac-Me-[3- 
Xylp; (O) 2,3-di-O-Ac-Me-13-Xylp; (zx) 4-O-Ac-Me-J3-Xylp; (×) 
fully deacetylated substrate. 
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Fig. 2. Main deacetylation reactions catalyzed by AcXE from St. li- 
vidans. Substrates: (A)2,3,4-tri-O-Ac-Me-13-Xylp; (B)2,3-di-O-Ac- 
Me-13-Xylp; (C) 2,4-di-O-Ac-Me-13-Xylp; (D) 3,4-di-O-Ac-Me-13- 
Xylp; (E) 2,3,4,6-tetra-O-Ac-Me-13-Glcp; (F) hypothetical fragment 
of acetylxylan. Thin arrows denote slow deacetylations; thick ar- 
rows fast deacetylations. 

zyme removed two acetyl groups simultaneously from posi- 
tions 2 and 3, to give 4,6-di-O-Ac-Me-[3-Glcp in 90-95% yield. 

AcXE was also tested on several other per-O-acetylated 
methyl glycopyranosides. The enzyme deacetylated 2,3,4,6- 
tetra-O-Ac-Me-c~-Glcp, 2,3,4,6-tetra-O-Ac-Me-c~-Galp and 
2,3,4,6-tetra-O-Ac-Me-6-Galp, but at slower rates than ob- 
served for 2,3,4,6-tetra-O-Ac-Me-13-Glcp. In all cases, the ma- 
jor products were the corresponding 4,6-di-O-Ac derivatives. 
Minor products were 2,6-di-O-Ac derivatives. Surprisingly, 
under identical conditions, the enzyme showed negligible ac- 
tivity on 2,3,4,6-tetra-O-Ac-Me-c~- and -13-Manp. 

3.2. Action on diacetates o f  Me-6-Xy lp  
The observation that 2,3,4-tri-O-Ac-Me-[3-Xylp and 2,3,4,6- 

tetra-O-Ac-Me-13-Glcp were deacetylated directly to 4-O-Ac- 
Me-13-Xylp and 4,6-di-O-Ac-Me-13-Glcp, suggested two possi- 
bilities. Those were: (i) the enzyme either deacetylated the two 
positions simultaneously; or (ii) slowly hydrolyzed the first 
acetyl group and then very rapidly removed the second acetyl 
group. The latter hypothesis was substantiated by experiments 
in which 2,3,4-tri-O-Ac-Me-[3-Xylp and all three possible Me- 
13-Xylp diacetates were used as substrates. 2,3,4-tri-O-Ac-Me- 
13-Xylp was converted almost exclusively into 4-O-Ac-Me-~- 
Xylp. The 4-acetate was also the sole product of the AcXE 
action on 2,4-di-O-Ac-Me-[3-Xylp and 3,4-di-O-Ac-Me-13- 
Xylp. Thus, the enzyme rapidly deacetylated positions 2 and 
3. When these positions are acetylated and position 4 is unde- 
rivatized, as it is in 2,3-di-O-Ac-Me-13-Xylp, the major deace- 
tylation product was Me-[3-Xylp. 4-O-Ac-Me-13-Xylp was gen- 
erated as a minor product, possibly as a result of spontaneous 
acetyl migration from position 3 to position 4. Two sub- 
strates, 2,3,4-tri-O-Ac-Me-13-Xylp and 2,3-di-O-Ac-Me-[3- 
Xylp, were poorly hydrolyzed in comparison to 2,4- and 
3,4-di-O-Ac-Me-13-Xylp. Table 1 presents the initial rates of 
their deacetylation, as well as the major initial products. The 
rates of deacetylation were compared with the rates of spon- 
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Fig. 3. Partial steps proposed for the deacetylation mechanism of 
methyl [3-D-xylopyranosides. Thin arrows indicate slow steps; thick 
arrows fast steps. E represents an enzyme-catalyzed reaction or 
transformation; S represents a spontaneous transformation. 

taneous transformation of the diacetates (measured without 
enzyme under identical experimental conditions [5]). At the 
utilized enzyme concentration, the observed deacetylation 
rates greatly exceeded the spontaneous transformation rates 
of diacetates. Therefore, with the exception of the formation 
of 4-acetate from 2,3-diacetate, the results were not signifi- 
cantly influenced by spontaneous acetyl group migration. 
An important observation, confirming the high regioselectivity 
of the St. lividans AcXE was that 2,4-diacetate was deacety- 
lated approx. 100-fold more rapidly, and 3,4-diacetate approx. 
40-fold more rapidly than triacetate and 2,3-diacetate. 

4. Discussion 

The St. lividans AcXE displays a different regioselectivity 
for deacetylation of methyl glycosides in comparison to li- 
pases used for carbohydrate deacetylation [9-13]. The deace- 
tylation regioselectivity for positions 2 and 3 is complemen- 
tary to the regioselectivity of most other deacetylating 
enzymes, which mainly release acetyl groups from position 4 
in xylopyranosides [13] and position 6 in hexopyranosides 
[14]. It is interesting to compare the catalytic properties of 
AcXE from St. lividans with those of AcXE from S. commune 

which was the first enzyme of its type examined for its action 
on acetylated methyl glycopyranosides [5]. The St. lividans 
enzyme does not hydrolyze aryl acetates, such as 4-nitro- 
phenyl- or 4-methylumbelliferylacetate, whereas the S. com- 
mune enzyme does. St. lividans AcXE is more specific for 
deacetylation of carbohydrates, and particularly of acetyl- 
xylan, perhaps due to the presence of an apparent xylan-bind- 
ing domain identical to one found in a St. lividans endo-[3-1,4- 
xylanases [6,7]. As shown here, St. lividans AcXE also differs 
from the S. commune enzyme in its action on acetylated 
carbohydrates. 

The deacetylation of 2,3,4-tri-O-Ac-Me-~-Xylp and 2,3,4,6- 
tetra-O-Ac-Me-[3-Glcp by both enzymes ultimately results in 
the same products. However, there are significant differences 
in individual steps leading to the double deacetylation. 
Whereas S. commune AcXE deacetylates the 3 position first 
and only then the 2 position, St. lividans AcXE appears to 
deacetylate the two positions almost simultaneously. This gen- 
erates high yields of 4-O-Ac-O-Ac-Me-~3-Xylp and 4,6-di-O- 
Ac-Me-[3-Glcp from the corresponding fully acetylated glyco- 
sides, without significant accumulation of intermediates (Fig. 
2). Experiments with Me-l]-Xylp diacetates provided data 
which allow straightforward interpretation of the catalytic 
reaction mechanism (Fig. 2). The AcXE from St. lividans 

shows unusually high preference for deacetylation of the 2 
position when the 3 position is not acetylated. Conversely, 
the 3-acetyl group is removed easily when position 2 is not 
acetylated. Derivatives in which both these adjacent positions 
are acetylated, 2,3,4-tri-O-Ac-Me-]3-Xylp and 2,3-di-O-Ac- 
Me-[3-Xyl, are found to be very poor substrates in comparison 
with the other two diacetates. This explains why the enzyme 
shows such a low affinity towards fully acetylated methyl gly- 
cosides in comparison with its outstanding performance on 
acetylxylan. The data also suggest that St. lividans AcXE rap- 
idly deacetylates monoacetylated xylopyranosyl residues of 
the polysaccharide, but almost ignores the doubly acetylated 
residues (Fig. 2). In contrast to the S. commune AcXE, the St. 

lividans enzyme has great difficulty in removing the first acetyl 
group from fully acetylated glycosides. However, for sub- 
strates in which only one of the positions 2 and 3 is acety- 
lated, deacetylation of position 2 or 3 takes place rapidly. It is 
difficult to imagine that the enzyme has an equal ability to 
deacetylate positions 2 and 3. We hypothesize that for deacet- 
ylation of these two positions, under conditions where the 
adjacent hydroxyl group is non-esterified, the enzyme uses 
the same reaction mechanism. One may envision a mechanism 
involving an enzyme-catalyzed formation of a five-membered 
transition state (Fig. 3), from which the acetyl group is rapidly 
released. Such intermediates are believed to be involved in the 

Table 1 
Enzymic and spontaneous transformation of Me-[3-Xyl tri- and di-O-acetates 

Substrate Deacetylation by St. lividans AcXE Spontaneous transformation 

Initial rate Major products Rate Products (4 h) 
(mM min 1) (2,3-:2,4-:3,4-) 

mM min 1 mM min -1 U -1 ml 

2,3,4-Tri-Ac 0.53 0.0071 4-Ac not applicable 
2,3-Di-Ac 0.50 0.0066 de-Ac:4-Ac- (ratio starting at ~ 1:0.7) 0.0057 1:0.1:0.4 
2,4-Di-Ac 1.07 0.67 4-Ac 0.022 0.15 : 1:0.7 
3,4-Di-Ac 0.37 0.23 4-Ac 0.018 0.07:0.5 : 1 

Substrates, 15 mM; concentration of AcXE of St. lividans 75 U/ml for 2,3,4-tri-O-Ac and 2,3-di-O-Ac, and 1.6 U/ml for 2,4-di-O-Ac and 3,4-di-O- 
Ac. 



260 P. Biely et al./FEBS Letters 396 (1996) 257 260 

spontaneous migration of acetyl groups along the glycopyra- 
noid ring [15]. A similar spontaneous step may be responsible 
for the generation of 4-O-Ac-Me-13-Xylp during AcXE treat- 
ment of 2,3-di-O-Ac-Me-[3-Xylp (Fig. 3). 

The high specificity of the St. lividans esterase for acetylxy- 
lan is underlined by the lack of its appreciable action on 
2,3,4,6-tetra-O-Ac-Me-[3-Manp and on partially chemically 
acetylated galactomannan (unpublished results). Once the 
equatorial 2-O-acetyl group in glucopyranosides and probably 
also in xylopyranosides becomes axial, the enzyme cannot  act. 
This implies that St. lividans AcXE will not  be able to dea- 
cetylate mannopyranosyl  residues in partially acetylated galac- 
toglucomannan or glucomannan.  This is in contrast to the 
catalytic properties of AcXE from S. commune, which shows 
a high regioselectivity for a successive double deacetylation of 
2,3,4,6-tetra-O-Ac-Me-[3-Manp to give almost exclusively 4,6- 
di-O-Ac-Me-13-Manp [5]. Thus, the substrate binding sites of 
St. lividans AcXE and S. commune AcXE must be consider- 
ably different. 

Consequently, of  these two enzymes only the St. lividans 

AcXE appears to be the real substrate-specific esterase. The 
question remains as to whether the St. lividans AcXE will be 
capable of attacking 3-O-acetyl derivatives of mannopyrano-  
sides with an unsubsti tuted 2-position. The five-membered 
intermediate (Fig. 3) could be formed regardless of the orien- 
tation of the C-2 hydroxyl group [16]. 
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