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Abstract We have investigated the subcellular distribution and transport vesicle (denoted a v-SNARE) and on the target 
association of cellubrevin, a low molecular weight protein membrane (denoted a t-SNARE). A number of proteins 
implicated in the process of membrane fusion, with intracellular have now been identified as members of the v-SNARE class 
membranes containing the insulin-sensitive GLUT4 glucose [6-8]. Two proteins belonging to this family, VAMP2 and 
transporter from rat adipocytes, rat skeletal muscle and human cellubrevin, have recently been shown to be expressed in ro- 
skeletal muscle. SDS-PAGE and immunoblot analyses of dent muscle [9,10] and adipocytes [11,12] and their abundance 
subcellular fractions of adipocytes and skeletal muscle indicated increases significantly upon cellular differentiation [9,12], sug- 
a positive correlation between the distribution of GLUT4 and gesting that they may participate in regulating membrane traf- 
cellubrevin in intracellular membrane fractions tested from all ticking events associated with the differentiated phenotype. 
tissues. The identity of the polypeptide reacting with antiserum Cellubrevin is considered to reside largely in recycling endo- 
against cellubrevin was further confirmed on the basis of its 
susceptibility to proteolysis by tetanus toxin. Immunoisolation of somes rather than specialized secretory vesicles [7]. Given that 
GLUT4-containing vesicles from a microsomal fraction enriched the GLUT4 transporter has also been shown to recycle to and 
with GLUT4 and cellubrevin revealed that cellubrevin could be from the cell surface, a process that is acutely regulated by 
coprecipitated with GLUT4 vesicles from adipocytes. In insulin [13,14], and the finding that cellubrevin is a resident 
contrast, intracellular GLUT4 vesicles isolated from both rat protein in GLUT4 vesicles isolated from murine 3T3-L1 adi- 
and human skeletal muscle were devoid of any detectable pocytes [12], the possibility exists that cellubrevin may be in- 
immunoreactivity towards cellubrevin. The observation that volved in the delivery and fusion of GLUT4 vesicles with the 
cellubrevin does not colocalise with intracellular GLUT4 in plasma membrane in insulin-sensitive tissues. 
skeletal muscle from two different species, rat and human, would No information is currently available concerning the ex- 
strongly suggest that it is unlikely to participate in the insulin- pression of cellubrevin in human skeletal muscle. Further- 
induced delivery of GLUT4 to the cell surface in skeletal muscle. more, although evidence exists showing that cellubrevin is 

Key words: SNARE; Membrane; Transport; Muscle; expressed in rat skeletal muscle, it remains presently unknown 
Adipocyte whether it is associated with intracellular vesicles containing 

GLUT4 and consequently whether it participates in the trans- 
location of GLUT4 in this tissue. Addressing this question is 
of some importance since, unlike adipose tissue, skeletal mus- 

1. Introduction cle makes a quantitatively larger contribution towards insulin- 
stimulated glucose disposal [15] and also represents the major 

In skeletal muscle and fat, insulin causes rapid stimulation site of insulin resistance in non-insulin-dependent diabetes 
in glucose transport which occurs largely as a result of an [16]. Knowledge of the mechanisms involved in the trafficking 
increase in the number of functional GLUT4 glucose trans- of GLUT4 will thus not only be of general biochemical inter- 
porters in the plasma membrane in response to hormone bind- est but may also prove invaluable in understanding the patho- 
ing. In the basal or unstimulated state, the bulk of the cellular genesis of impaired glucose utilization. In this study, we pre- 
GLUT4 resides in specialized intracellular storage vesicles sent novel evidence showing that, despite the expression of 
which can be mobilized upon exposure of adipose tissue and cellubrevin in rat and human skeletal muscle, it appears not 
skeletal muscle to insulin [1 3]. Whilst there is firm acceptance to be a component of muscle GLUT4 vesicles isolated from 
of the GLUT4 translocation hypothesis, information concern- insulin-responsive fractions. This observation strongly con- 
ing the cellular machinery involved in the insulin-induced traf- trasts with our finding that cellubrevin colocalises with 
ticking and fusion of GLUT4-containing vesicles with the GLUT4 in rat adipocytes. The implications of these observa- 
plasma membrane remains extremely limited at present. How- tions are discussed. 
ever, it is not unreasonable to assume that a common group 
of proteins may be involved in the basic steps of intracellular 

2. Materials and methods membrane movement, docking and fusion with a target mem- 
brane in most cell types. The SNARE hypothesis provides an 2.1. Tissue procurement 
appealing framework for understanding the mechanism of ves- Human soleus muscle (20-30 g) was obtained from patients at the 
icle targeting and fusion [4,5]. In this model, vesicle docking Orthopaedic Department of King Cross Hospital, Dundee undergoing 
and fusion relies upon the pairwise matching of specific small elective limb amputation surgery due to peripheral vascular complica- 
membrane proteins present on the cytoplasmic surface of the tions. Upon surgical excision, ~0.5 g of muscle was reserved for 

histochemical analyses and the remainder, intended for subcellular 
fractionation studies, was immediately frozen in liquid nitrogen and 
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and oxygenated, and which subsequently stained histochemically nor- prior to a single wash with 1 M NaC1, 1 mM EDTA and 50 mM 
mal for myosin-ATPase, was used in the present study. For rat tis- HEPES pH 7.4 followed by two final washes in PBS before resuspen- 
sues, male Sprague Dawley rats (200-250 g) were killed by cervical sion in Laemmli buffer. For the immunoisolation of GLUT4-contain- 
dislocation and epididymal fat pads and hindlimb skeletal muscle ing vesicles from human skeletal muscle a different procedure was 
rapidly excised. Isolated fat pads were used immediately for study, followed. Purified anti-GLUT4 antibody 1F8 (Genzyme) as well as 
whereas, hindlimb muscle was frozen in liquid nitrogen and stored at non-specific mouse IgG (Sigma) were coupled to Protein G-Sepharose 
-80°C until required, beads (GammaBind Plus Sepharose, Pharmacia) at a concentration of 

1 mg/ml beads. The antibodies were then cross-linked to the beads 
2.2. Subcellularfractionation of  isolated tissue using dimethyl pimelimidate as described elsewhere [29]. Between 200 

Rat adipose tissue was subjected to 0.1% collagenase digestion at and 300 lag of membrane protein from the F30 and F35 human 
37°C for 45 min. Digested tissue was subsequently filtered through muscle fractions, in a final volume of 200 lal, were treated with 20 
nylon mesh (180 lam) for isolation of adipocytes which were subse- lag of 1F8 or non-specific mouse IgG previously cross-linked to the 
quently fractionated according to the method described by Simpson et beads as described above. After 1 h incubation at room temperature 
al. [17]. The procedure allows the isolation of fractions enriched with the samples were applied to a discontinuous sucrose gradient (10 and 
plasma membranes (PM), low density microsomes (LDM) and high 40% sucrose w/w) and centrifuged at 190000xg for 30 min. The 
density microsomes (HDM) [17]. membranes recovered from the top of the 40% sucrose band were 

Rat and human skeletal muscle was homogenized and subjected to diluted with PBS and pelleted at 190000xg, the pellet from this 
differential centrifugation for isolation of crude (total) muscle mem- step was resuspended in Laemmli buffer and termed the immunesu- 
branes which were subfractionated on a discontinuous sucrose density pernatant. The beads and vesicles bound to them were collected from 
gradient (25, 30 and 35%) as described previously [18-20]. This pro- the bottom of the sucrose gradient tube and washed twice with PBS 
cedure results in the separation of three distinct membrane bands; one prior to a single wash with 1 M NaC1, 1 mM EDTA and 50 mM 
on top of the 25% sucrose cushion (F25) representing membranes HEPES pH 7.4 followed by two final washes in PBS. The adsorbed 
enriched with PM markers [19 21], a second band separates on top material was eluted with Laemmli buffer. 
of the 30% sucrose layer (F30) containing intracellular membranes 
largely of endosomal origin [22] and a third band separates out on 3. Results 
top of the 35% sucrose layer (F35) and is composed of membranes 
endowed with the insulin sensitive pool of GLUT4 [3,23]. The protein 
content of individual adipocyte and muscle fractions was determined 3.1. Subcellular distribution o f  cellubrevin in rat muscle and 
using the method of Bradford [24]. adipocytes 

The dis t r ibut ion of  cellubrevin in m e m b r a n e  fract ions iso- 
2.3. Western-blot analyses lated by subcellular f rac t ionat ion f rom b o t h  skeletal muscle 

Adipocyte and muscle membrane fractions (20 lag protein) were and  pr imary  ra t  adipocytes is shown in Fig. 1. Quant i ta t ive  
resolved by SDS-PAGE as described by Laemmli [25]. Samples were 
transferred onto nitrocellulose filters, blocked and incubated over- analyses of  cellubrevin immunoreac t iv i ty  in the var ious frac- 
night at 4°C with antiserum specific for GLUT4 (1:500, East Acres t ions f rom three individual  experiments  revealed tha t  its rela- 
Biologicals, Southbridge, MA, USA). Western blots of cellubrevin rive dis t r ibut ion in the F25, F30 and  F35 muscle fract ions was 
(using either a 1:500 dilution of MC16-antibody [26] kindly provided 21 + 4, 52 + 2 and  27 + 9%, respectively. PM,  L D M  and H D M  
by Dr. Pietro De Camilli, Yale University School of Medicine, New 
Haven or a 1:1000 dilution of D204 antibody [7] gifted by Dr. Harvey fract ions isolated f rom adipocytes showed tha t  the relative 
McMahon, MRC Unit, Cambridge, UK) were carried out on mem- dis t r ibut ion of  cellubrevin was 29 + 7, 49 + 1 and  22 + 4%, re- 
brane samples which had previously been resolved by SDS-PAGE spectively. The observed subcellular d is t r ibut ion of  cellubrevin 
using Schagger-type gels [27] which allows better separation of pro- in b o t h  tissues was identical irrespective of  whether  we used 
reins in the low molecular weight range. Primary antibody detection 

the MC16  or D204 anti-cel lubrevin antibodies.  The observed was carried out using either 0.1 laCi/ml []2sI]Protein A or a horse- 
radish-peroxidase-conjugated secondary antibody and enhanced enr ichment  of  cellubrevin in the L D M  fract ion of  adipocytes 
chemiluminescence, is of  interest, since this f ract ion also houses the insulin-respon- 

sive pool  of  G L U T 4  glucose t ranspor ters  [30]. In skeletal 
2.4. Sensitivity of  cellubrevin to tetanus toxin muscle G L U T 4  is a b u n d a n t  in membranes  f rom bo th  the 

The susceptibility of cellubrevin expressed in membrane fractions F30 and  F35 but  only the latter f ract ion conta ins  the t ranslo-  
isolated from rat muscle and fat to tetanus toxin was investigated by 
incubating intracellular muscle membranes isolated from the F30 and catable pool  of  G L U T 4  [3,23]. However,  cel lubrevin reactivity 
F35 and from the LDM adipocyte fraction with 20 gg/ml whole 
tetanus toxin (kindly provided by Dr. Colin Watts, Department of 
Biochemistry, University of Dundee), which had been preactivated by Skeletal Muscle Adipocytes 
incubation with 10 mM dithiothreitol, 50 mM NaC1, 0.25 mM ZnCI2, 
10 mM HEPES, pH 7.2. Membranes and toxin were incubated at 
37°C for 1 h and the reaction terminated by the addition of Laemmli ,~ 
buffer and boiling of samples for 3 min. In some experiments 0.5%Tri- tt~¢,,1 ~ ¢~u'~ ~. 
ton X-100 was included during the toxin incubation period to assess if gr~ ~_~ 
the toxin's ability to cleave cellubrevin was enhanced. Samples were 
then resolved by SDS-PAGE on Schagger-type gels and Western blot- 
ting using antiserum to cellubrevin performed as described above. 

J 

2.5. lmmnunoisolation of  intracellular GLUT4-containing vesicles G L U T 4  m W 
The procedure for immunoisolating GLUT4-containing vesicles 

from rat skeletal muscle and fat microsomes has been previously 
described in detail [23,28]. Briefly, 200-300 lag of membrane protein 
from the F30 and F35 muscle fraction or from LDM (adipocytes) 
were treated with 5 lal of non-relevant serum or 5 lal of anti- Cellubrevin 
GLUT4 serum (East Acres, Southbridge, MA). The GLUT4-contain- 
ing vesicles were complexed by the addition of Protein A-Sepharose 
beads and pelleted by centrifugation. The resulting supernatant was Fig. 1. Representative Western blots showing the distribution of 
centrifuged at 190 000 x g, the pellet from this step being resuspended GLUT4 and cellubrevin in rat skeletal muscle and adipocyte subcel- 
in Laemmli buffer and termed the immunesupernatant. The immuno- lular fractions. Proteins (20 lag) from each fraction were subjected 
pellet was washed twice with phosphate-buffered saline (PBS, pH 7.4) to SDS-PAGE and immunoblotting as described in the text. 
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Adipocytes Skeletal Muscle 

L D M  F30 F35 

TX100 + + + + + + 

T e T x  + + + + + + 

~ . . . . .  ~ ~ ~ C e l l u b r e v i n  

Fig. 2. Effects of tetanus toxin on cellubrevin in rat skeletal muscle and adipocytes. Isolated membrane fractions from both skeletal muscle and 
adipocytes, were incubated with or without tetanus toxin (20 gg/ml) as described in Section 2. The incubation of membranes and toxin was 
performed in the absence or presence of 0.5% Triton X-100. After a 1 h in vitro incubation, samples were boiled for 3 min in Laemmli sample 
buffer and subjected to SDS-PAGE and immunoblotting using cellubrevin antibodies. 

was found to be most enriched in muscle membranes from the toxin for cellubrevin was further confirmed by the lack of  any 
F30 which are largely of  endosomal origin [22]. detectable differences in the overall protein composit ion of  the 

various fractions as judged by analyses of  gels stained with 
3.2. Susceptibility o f  cellubrevin to proteolysis by tetanus toxin Coomassie blue (data not  shown). 

In vitro studies have shown that cellubrevin is a good sub- 
strate for tetanus toxin [7]. To confirm further that the antigen 3.3. Analyses o f  the localization o f  cellubrevin in 
reacting with the anti-cellubrevin antibodies used in this study GLUT4-containing vesicles isolated from rat muscle 
was indeed cellubrevin, we assessed the integrity of  the immu- and adipocytes 
noreactive band following in vitro treatment of  L D M  adipo- The observed enrichment of  cellubrevin in intracellular frac- 
cyte membranes and intracellular muscle membranes (from tions of  rat skeletal muscle and adipocytes, that were also 
the F30 and F35) with tetanus toxin. Fig. 2 shows that ex- enriched with G L U T 4  (Fig. 1), raises the possibility that the 
posure of  the different muscle and fat membrane fractions to two proteins may be resident on common intra-vesicular 
toxin led to a significant reduction in cellubrevin immuno- structures. To test this proposit ion we immunoprecipitated 
reactivity. We also investigated the effects of  0.5% Tri ton X- GLUT4-conta in ing  vesicles from the insulin-sensitive frac- 
100 during the incubation period of  the membranes with toxin tions ( L D M  from adipocytes and the membranes from the 
since it has been suggested that mild detergent treatment may F35 rat muscle fraction), as well as the from the F30 rat 
facilitate proteolysis of  cellubrevin by increasing the accessi- muscle fraction which is enriched with endosomal membranes 
bility of  the toxin to the cleavage site [31]. However,  we were [22]. The immune pellets (containing the G L U T 4  vesicles) and 
unable to observe any significant differences in cellubrevin the corresponding immunesupernatants from these fractions 
degradation as a result of  detergent treatment. The effect of  were screened using antibodies specific for cellubrevin. In 
the toxin was selective for cellubrevin as the immunoreactivity four independent experiments for muscle and three for adipo- 
of  G L U T 4  within the same membrane fractions was unaf- cytes, the efficiencies with which G L U T 4  vesicles were preci- 
fected by the toxin (data not  shown). The specificity of  the pitated, when using a polyclonal an t i -GLUT4 antibody, were 

IP IS LDM 

F30 F35 F30 F35 IP IS 

C G4 G4 C G4 G4 C G4 G4 

/ ~ Cellubrevin 

Muscle Adipocytes 
Fig. 3. Analyses of the localization of cellubrevin in GLUT4-containing vesicles. Intracellular membranes fractions (LDM from adipocytes and 
membranes from the F30 and F35 rat muscle fractions) were incubated with a control non-immune (C) IgG or with anti-GLUT4 (G4) anti- 
body, and immunoprecipitated as described in Section 2. The immunopellets (IP) and the corresponding immunesupernantants (IS) from these 
fractions were screened using antibodies specific for GLUT4 and cellubrevin. 
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61 _+ 9, 49 + 2 and 48 + 2% from the LDM (adipocytes), F30 
and F35 muscle fractions, respectively. However, precipitation IP IS 
of GLUT4 vesicles from the rat muscle fractions was signifi- 
cantly improved using a monoclonal anti-GLUT4 (1F8) anti- 

F30 F35 F30 F35 
body. 1F8 immunoadsorbed nearly 79 and 77% of the total 
GLUT4 from the F30 and F35, respectively. Regardless of C G4 C G4 G4 G4 
which GLUT4 antibody was used for the immunoisolation ........ 
of muscle GLUT4 vesicles we were unable to detect any im- ~ GLUT4 
munoreactivity towards cellubrevin in the GLUT4 immune 
pellets (Fig. 3). However, immunoprecipitation of GLUT4 
vesicles from the LDM fraction of rat adipocytes resulted in B ~  Cellubrevin 
the coprecipitation of cellubrevin. Use of a non-immune rab- 
bit serum as control did not result in precipitation of GLUT4 Fig. 5. Analyses of the localization of cellubrevin in GLUT4-con- 
or cellubrevin (Fig. 3). raining vesicles immunoprecipitated from human skeletal muscle. In- 

tracellular membrane fractions (F30 and F35) were incubated with a 
control non-immune (C) IgG or with 1F8 anti-GLUT4 (G4) anti- 

3.4. Expression and subcellular distribution of  cellubrevin in body, and immunoprecipitated as described in Section 2. The immu- 
human skeletal muscle nopellets (IP) and the corresponding immunesupernantants (IS) 

The distribution of cellubrevin in human muscle mere- from these fractions were screened using antibodies specific for 
GLUT4 and cellubrevin. It should be noted that the strong cellubre- 

branes isolated by our fractionation procedure is shown in vin reactivity observed in the IS from the F35 is as a consequence 
Fig. 4. Quantitative densitometry of immunoblot data from of using 10-15 fold more protein than that used to assess cellubre- 
three separate human muscle preparations revealed that the vin distribution in the different muscle fractions shown in Fig. 4. 
relative distribution of cellubrevin in the F25, F30 and F35 
was 48+11, 33+5 and 19+10% (mean+S.E.M.), respec- 
tively. We have previously reported that the F25 human frac- muscle is in full agreement with the data obtained from using 
tion is enriched with PM-markers (ie. the GLUT5 hexose rat skeletal muscle (Fig. 3). 
transporter [19] and the cq-subunit of the Na,K-ATPase 
[20]) but that both these markers are not detectable in the 4. Discussion 
F30 or F35 signifying that membranes from these two frac- 
tions are likely to be largely of intracellular origin [19,20]. Of It is now well established that the expression of the GLUT4 
interest was the finding that, as in rat skeletal muscle (Fig. 1), glucose transporter in skeletal muscle and fat forms an inte- 
the human F30 muscle fraction housed significant amounts of gral component of the mechanism by which insulin is able to 
both cellubrevin and GLUT4 (Fig. 4). We therefore investi- acutely stimulate the uptake of glucose in these tissues (for 
gated whether these proteins were associated by immunopre- reviews see [32-34]). However, data from a number of cell 
cipitating GLUT4 vesicles from the F30 and from the F35 transfection studies clearly indicate that the expression or 
(which also contains significant amounts of GLUT4) and presence of GLUT4 transporters and insulin receptors alone 
screened the isolated GLUT4 vesicles with anti-cellubrevin do not fulfil the basic requirements for insulin-dependent glu- 
antibodies. From three separate immunoprecipitation experi- cose transport (reviewed in [34]). Transfection of GLUT4 into 
ments the efficiency with which GLUT4 vesicles were isolated cells which normally do not express this transporter isoform 
from the F30 and F35 were 86 + 2 and 89 + 7% (mean_+ has invariably led to the observation that, whilst the transpor- 
S.E.M.), respectively. Analyses of immunoisolated GLUT4 ter may be efficiently expressed and retained in a cytoplasmic 
vesicles from both fractions revealed that they did not contain compartment, insulin fails to induce its translocation to the 
any detectable reactivity against cellubrevin which was fully cell surface in a manner observed in muscle and fat cells. It 
recovered in the immunesupernatant (Fig. 5). The observed has been suggested that the inability of insulin to stimulate 
segregation of GLUT4 and cellubrevin in human skeletal GLUT4 translocation in transfected cell lines may reflect the 

need to have present additional gene products whose expres- 
sion may be central to the vesicle trafficking and fusion proc- 

~ t t ~  ess. 
(N1 ~ ~ In an attempt to understand the cellular components in- 
~,4 ~ ~ volved in. the insulin-induced recruitment of GLUT4 there 

has been growing interest towards the analyses and identifica- 
tion of proteins associated with intracellular vesicles enriched 

G L U T 4  with GLUT4 in fat and skeletal muscle. In particular, recent 
attention has focussed upon a low molecular weight protein 
called cellubrevin which belongs to the v-SNARE family. 
Studies in 3T3-L1 adipocytes have revealed that this murine 
cell line expresses cellubrevin and more importantly that it 

Cellubrevin appears to be a constituent protein of GLUT4 vesicles iso- 
lated from the insulin-responsive microsomal compartment. 
The presence of a v-SNARE in these isolated vesicles provides 

Fig. 4. Representative Western blots showing the distribution of 
GLUT4 and cellubrevin in human skeletal muscle fractions. Proteins a strong basis for suggesting that it may participate in events 
(20 p~g) from each membrane fraction were subjected to SDS-PAGE related to the fusion of GLUT4 membrane vesicles [12]. How- 
and immunoblotting as described in the text. ever, owing to technical difficulties normally associated with 
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fractionation and isolation of GLUT4 vesicles from skeletal the human F30 fraction is enriched with both cellubrevin and 
muscle, information on whether cellubrevin may participate in GLUT4, isolation of GLUT4 vesicles from this fraction does 
the trafficking of muscle GLUT4 has been less forthcoming, not result in the coprecipitation of cellubrevin. Similarly, 
Using subcellular fractionation and immunoprecipitation GLUT4 vesicles isolated from the human F35 (the cognate 
methods that are well established in our hands, the present F35 rat muscle fraction contains the insulin responsive 
study has attempted to address this issue through a compara- GLUT4 pool) are also devoid of cellubrevin. These findings 
tive analyses of GLUT4 vesicles isolated from rat adipose are consistent with those made in rat skeletal muscle and 
tissue and rat and human skeletal muscle. Our observations strengthen the suggestion that cellubrevin is not likely to be 
showing the presence of cellubrevin in GLUT4-containing involved in the targetting of GLUT4 to the cell surface in 
vesicles isolated from the light microsomal fraction of primary either rat or human skeletal muscle. 
rat adipocytes are consistent with those made in 3T3-L1 adi- In stark contrast, cellubrevin is a component of intracellular 
pocytes [12] and may signify that the colocalization of cellu- GLUT4 vesicles isolated from rat adipocytes and this raises 
brevin and GLUT4 is a hallmark of the fat cell phenotype the interesting possibility that if it is involved in the insulin- 
which is not influenced by the cells genotypic origin, regulated movement and fusion of GLUT4 vesicles in adipose 

Analyses of GLUT4 vesicles from both adipocytes and tissue, then the mechanism may be one that is functionally 
muscle have led to the identification and characterization of different to that operating in skeletal muscle. In an attempt to 
a number of proteins including vp165 or gpl60 [35,36], gain some insight into this issue we are currently investigating 
SCAMPs [37,38] and Rab4 [23,39]. Based on the observation the effects of ablating cellubrevin expression in fat cells with a 
that all of these proteins are common to GLUT4 vesicles view to evaluating its importance in the insulin-induced stim- 
isolated from muscle and fat [23,39,40] and recent work show- ulation of glucose transport and GLUT4 translocation. 
ing that the insulin-responsive GLUT4 vesicles from both 
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