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molecular model  of  the human enzyme based on the known 
Abstract A three-dimensional model of the human class IV 
alcohol dehydrogenase has been calculated based upon the X-ray three-dimensional structure of  the human class I alcohol de- 
structure of the class I enzyme. As judged from the model, the hydrogenase [13]. We have also performed docking calcula- 
substrate-binding site is wider than in class I, compatible with the tions between the enzyme and different substrates in order to 
differences in substrate specificities and the large difference in evaluate binding characteristics. 
Km value for ethanol. Substrate docking performed for the class I 
structure and the class IV model show all-trans-retinol and 11- 

2. Materials and methods 
cis-retinol to bind better to the class IV enzyme. The calculations 

also indicate that 16-hydroxyhexadecanoic acid binds in a A three-dimensional model of human class IV alcohol dehydrogen- 
different manner for the two enzyme classes. A simulation of ase was obtained by adopting its amino acid sequence [7-11] into the 
coenzyme-binding indicates that the adenine ring of the coenzyme known fold of the human class I ~ alcohol dehydrogenase subunit [13] 
might be differently bound in class IV than in class I, decreasing using the program ICM (version 2.5, Molsoft LLC, Metuchen, NJ, 
the interactions with Asp-223 which is compatible with the higher USA; 1996). In the first step of model building, tethers were imposed 
kea t values for class IV. between residues of the class I template structure and those of the 

class IV structure, and were then minimised. Subsequently, all methyl 
Key Words." Alcohol dehydrogenase; Class specificity; groups were rotated to minimise clashes, followed by iterative com- 
Molecular modeling; Structural comparison;  Substrate bined geometry and energy optimisation. After adjustments of polar 
docking hydrogen positions, the whole molecule was subject for free minimisa- 

tion. Finally, the side chains were subjected to a biased Monte Carlo 
procedure [14] and loops around the substrate-binding and coenzyme- 
binding sites were minimised. 

1. Introduction To study interactions between the enzyme and different substrates, 
a non-rigid docking procedure was utilised based upon a Monte Carlo 
procedure, allowing free movement of the substrate, the rotatable 

Human  alcohol dehydrogenase is a zinc-dependent enzyme bonds of the substrate, and the ~ angles of the substrate-binding 
system with different classes and isozymes, containing 373 residues at positions 48, 57, 93, 110, 115, 116, 140, 141, 294, 318, 
379-residue subunits [1]. These enzymes belong to the family and with an additional distance restraint of 2.0-2.4 A between the 
of  medium-chain dehydrogenases/reductases, M D R  [2]. Pres- alcohol oxygen and the catalytic zinc ion. After the initial docking, the 

distance restraint was removed and the substrate and substrate-bind- 
ently, at least six different classes of  mammal ian  alcohol de- ing residues were subjected to energy minimisations. The binding en- 
hydrogenase are known [1]. The inter-class amino acid residue ergies were calculated with the program ICM using the REBEL (rap- 
differences give rise to different substrate specificities. Class I id-exact-boundary-element) method for electrostatic free energy, and 
is the classical, ethanol-active liver enzyme, class II a variable the constant surface tension method with 20 cal/A 2 for hydrophobic 

form also in liver, class III  a glutathione-dependent formalde- energy. 
For the coenzyme docking calculations, the NAD was placed into 

hyde dehydrogenase of  most tissues, and class IV a major the class IV model to occupy a position as in the class I structure. 
form in the stomach and upper digestive tract, while the re- Subsequently, the coenzyme and coenzyme-binding residues were sub- 
maining classes are less well defned.  Class IV possesses con- jected to energy minimisations. For comparison, the same procedure 
siderable activity with ethanol and has also drawn much at- was adopted to the class I structure. 

tention because of  its ability to use retinol as a substrate [3,4], 
thereby contributing to the formation of  retinoic acid which is 3. Results and discussion 
a regulatory factor in cellular growth and differentiation [5]. 
The class IV form has been enzymatically characterised [6] 3.1. Model of  the class IV enzyme 
and its primary structure is known from human [7-11] and The human class IV alcohol dehydrogenase differs from the 
rat [12]. It is most  closely related to the class I enzyme (69% class I I ]  form at 31% of the residues. The modelling shows 
residue identity), but  exhibits several-fold higher Km and koat that the class IV structure is compatible with the general fold 
values than the class I isozymes [10,11]. Also, the Km and of  the class I enzyme, in accordance with the conservation of  
dissociation constants for N A D  are much higher with class structurally important  residues. The class IV structure has one 
IV [10], consistent with the high kc~t. In order to acquire residue less (Gly- l l7 )  compared to the class I structure. F rom 
further knowledge about  the structural properties that could the model  it can be concluded that this difference gives a more 
explain the kinetic features of  class IV, we have calculated a open substrate-binding pocket in class IV than in class I 

(Fig. 1). 

*Corresponding author. Fax: (46) (8) 337 462. Of  particular interest are the residues lining the substrate- 
E-maih bpn@mbb.ki.se binding site and the coenzyme-binding site in the class IV 
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Fig. 1. Stereo views of the substrate-binding sites of the human class IV alcohol dehydrogenase model (A) and the human class I alcohol dehy- 
drogenase (B). The catalytic zinc is shown as a sphere and substrate-binding amino acid residues as sticks. Residues are numbered according to 
the class I enzyme. 

model. At the substrate-binding site, all but  one exchange size has also been proposed to explain the low affinity of class 
versus class I involve substitutions of a hydrophobic residue III for ethanol [15,16]. 
for another. The exception is a Leu/Tyr exchange (class IV/ 
class I) at position 110 (Table 1). Among the coenzyme-bind- 3.2. Docking o f  different substrates 

ing residues, there are only two exchanges - Leu/Ile-224 and The model was utilised to evaluate the differences toward 
His/Arg-271. The contributions to the molecular surface of the class I structure in substrate binding. For  each substrate, 
the substrate-binding residues were determined (Table 1). the binding energies were calculated as the difference between 
The sum of these contributions shows that the class IV model the complex on the one hand and the enzyme and substrate 
has a substrate-binding pocket with 406 ,~2 and class I one alone on the other (Table 2). The decrease in water-accessible 
with 335 .~2. This difference in size is compatible with the surfaces was calculated and the distances between the alcohol/ 
higher class IV Km value for ethanol. A large substrate pocket aldehyde group and the catalytic zinc were measured (Table 2). 

The largest differences between binding energies for the 
Table 1 class I structure and the class IV model are seen with all- 
Accessible surface areas of amino acid side chains lining the sub- trans-retinol having a binding energy of - 9 . 0  kcal/mol for 
strate-binding site in the human alcohol dehydrogenase class I [3 class IV, but  - 6 . 0  kcal/mol for class I. The distance of 2.4 
structure and class IV model A between the -OH group of that substrate and catalytic zinc 
Position Class I ~ Class IV 

is also the smallest for the substrates investigated, reflecting a 
Residue Area (~2) Residue Area (~2) tight binding, consistent with another study [11]. This corre- 

48 Thr 22.4 Thr 28.9 lates with the fact that all-trans-retinol is a better substrate for 
57 Leu 57.6 Met 47.9 class IV than for the class I isozymes [4]. Also, for l l-cis- 
67 His 7.9 His 8.1 retinol, the binding energies are lower for class IV ( - 5 . 0  
93 Phe 22.8 Phe 15.3 
110 Tyr 81.8 Leu 75.4 kcal/mol) than for class I ( -2 .1  kcal/mol). Due to the instabil- 
116 Leu 39.8 lie 61.5 ity of this retinoid, it has not  been generally tested as a sub- 
140 Phe 10.2 Phe 34.1 strate for alcohol dehydrogenase. Our model predicts that it 
141 Leu 23. 7 Met 33.3 may be a better substrate for class IV than for class I. 
294 Val 41.7 Val 52.7 
318 Val 26.6 Val 48.8 For  16-hydroxyhexadecanoate, the binding energies are of 

the same range, but  the substrate is then differently bound. In 
Sum * 335 406 the wider substrate-binding pocket of the class IV model, 16- 
Positions with residue differences between the two classes are denoted hydroxyhexadecanoate binds deeper down in the substrate 
in italics, pocket (Fig. 2), while in the class I pocket it is bound in an 
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Fig. 2. Comparison of the substrate-binding sites between class IV (left) and class I (right) with 16-hydroxyhe×adecanoate (A) and all-trans-reti- 
nol (B) bound. The accessible surface is visualized for the amino acid residues 48, 56-59, 67, 93, 110, 114-119, 140, 141, 174, 294-298, 318 and 
319. The substrate molecules are shown as stick models. The arrows point at the catalytic zinc. 

e longated form. The different b inding does not  affect the Km In contrast ,  wi th  e thanol ,  hexanal,  trans-2-hexenal, octanol ,  
values [6,17]. octanal ,  4-hydroxynonenal ,  n i t robenzaldehyde,  and  12-hy- 

Table 2 
Binding energies, differences in water-accessible surface, and distances between the substrate alcohol/aldehyde group and the catalytic zinc for 
different substrates docked to the class I structure and the class IV model 

Enzyme Substrate Binding energy (kcal/mol) Difference in water-accessible surface (~2) Distance (A.) 

Class I all-trans-retinol -6 .0  -713.7 2.9 
Class IV all-trans-retinol -9 .0  -781.1 2.4 
Class I 11-eis-retinol -2.1 -725.5 2.8 
Class IV 11-eis-retinol -5 .0  -729.9 2.6 
Class I 12-hydroxydodecanoate -1 .9  -622.3 3.0 
Class IV 12-hydroxydodecanoate -3 .2  -674.9 3.1 
Class I 16-hydroxyhexadecanoate -3 .9  -777.1 2.8 
Class IV 16-hydroxyhexadecanoate -4 .3  -814.6 2.8 
Class I ethanol -2 .0  -227.5 2.8 
Class IV ethanol -2 .0  -251.5 2.7 
Class I hexanal -2 .3  -398.7 2.6 
Class IV hexanal -2 .0  -411.1 2.8 
Class I trans-2-hexenal -2 .2  -373.0 2.7 
Class IV trans-2-hexenal -3.1 -407.6 2.6 
Class I octanal -3.1 -427.5 3.2 
Class IV octanal -2 .3  -463.1 2.8 
Class I octanol -4 .4  -470.4 2.6 
Class IV octanol -3.1 -513.2 2.8 
Class I 4-hydroxynonenal -3 .0  -445.7 2.6 
Class IV 4-hydroxynonenal -3 .2  -548.4 2.6 
Class I nitrobenzaldehyde -2 .9  -407.2 3.3 
Class IV nitrobenzaldehyde -2 .8  -403.7 2.6 
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droxydodecanoate, the binding energies are similar for the Bergvall Foundation, the Harald and Greta Jeansson Foundation, 
class I and class IV structures. In both cases, the size of the the Erik and Edith Fernstr6m Foundation, the Direcci6n General 

de Investigaci6n Cientifica y T6cnica (PB92-0624), and the European 
substrate pocket is large enough to harbour these substrates. Commission (Contract BMH1-CT93-1601). 
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