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Abstract Rhodamine 123 staining and electron microscopy 
were used to reveal a correlation between the ultrastructural and 
functional state of cultured cerebellar granule cells after short 
glutamate treatment. Glutamate exposure (15 min, 100 lxM) in 
Mg2+-free solution caused considerable ultrastructural altera- 
tions in a granule cell: clumping of the chromatin, swelling of the 
endoplasmic reticulum and mitochondria, and disruption of the 
mitochondrial cristae. After glutamate treatment, the mitochon- 
dria of the neurons lost their ability to sequester rhodamine 123. 
Both the N-methyl-D-nspartate receptor channel blocker MK- 
801 (30 ItM) and cobalt chloride (2 mM) prevented the 
deteriorative effects of glutamate. These data suggest that 
glutaumte-induced Ca 2+ overload of the neurons can lead to non- 
specific permeability of the inner mitochondrial membrane, 
resulting in neuronal death. 
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1. Introduction 

Glutamate (GLU) appears to be one of the major excita- 
Wry neuromediators in the CNS, however, a sharp rise in 
glutamate content in the brain or an imbalance between its 
release and re-uptake may cause damage to glutamate recep- 
tive neurons, which happens under hypoxia, ischemia and a 
number of other pathological events in CNS [1-3]. It has been 
found that processes inducing neuronal degeneration after the 
hyperstimulation of glutamate receptors result in Ca 2+ and 
Na + influx into the cell through ion channels activated by 
GLU [4,5]. This, in turn, results in overloading of neuronal 
cvtosol with these cations [6,7] and in subsequent distortion of 
the cellular energetics [8,9] and activation of Ca2+-dependent 
proteolytic and lipolytic enzymes. Many drugs causing cellular 
d~tmage are known to use rnitochondria as a primary target 
[10,11]. As for GLU, used at concentrations that are toxic for 
a cell, little is known about its effects on mitochondrial struc- 
ture and functions, thus providing the impetus for the present 
sl ady. 

*~ ~'orresponding author (or D.B. Zorov). 

A,~breviations: GLU, glutamate; R123, rhodamine 123; BSM, bal- 
anced salt medium; MK-801, (+)-5-methyl-10,11-dihydro-5H-diben- 
zo(a,d)cyclohepten-5,10-imine hydrogen maleate; NMDA, N-methyl- 
D- aspartate 

2. Materials and methods 

Primary cerebellar cultures were prepared from the cerebella of 7-8- 
day-old Wistar rats using a procedure described earlier [12]. The in- 
itial potassium concentration in the medium was 5 mM; on the sec- 
ond day of cultivation the potassium concentration was increased to 
25 mM. Cells were exposed to GLU (100 ~tM) for 15 min in a bal- 
anced salt medium (BSM) of the following composition (in mM): 
NaC1 (137), KC1 (5), Na2HPO4 (0.035), NaHCO3 (12), CaC12 (2.3), 
glucose (11), pH 7.6-7.8, t=20°C. Ceils incubated for 15 min in 
GLU-free BSM were chosen as a control. COC12 (2 mM) was used 
to block Ca 2+ channels and MK-801 (30 p.M) as a non-competitive 
specific antagonist of NMDA channels, which were added to BSM 
simultaneously with the addition of GLU. Exposure to the calcium 
ionophore A23187 was initiated by addition of A23187 to the culture 
dish (20 laM, in BSM, 5 min). Mitochondrial energization in a cell was 
monitored by rhodamine 123 (R123) accumulation after 10 min in- 
cubation (5 lag/ml) in BSM following exposure to the drugs. Cellular 
fluorescence was monitored using a Univar fluorescence microscope, 
Reichert. For estimation of viability, treated cells were washed twice 
with BSM and incubated in this medium for 2 h in a CO2 incubator 
for the development of delayed neuronal death. After incubation cells 
were fixed with an ethanol-formaldehyde-acetic acid (7:2:1) mixture 
and stained with vanadium hematoxylin. The percentage of damaged 
neurons was determined by counting the intact and pyknotic nuclei of 
the granule cells in 9-view fields (average number of cells about 104). 
For electron microscopy, cells were fixed using 2.5% glutaraldehyde 
prepared on phosphate buffer (pH 7.2), postfixation being with 1% 
osmium tetroxide, dehydration in ethanol, and embedding in Epon 
812. Ultrathin sections were prepared on an LKB-3 ultramicrotome 
and examined at 75 kV in a Hitachi HU-11 electron microscope. 

3. Results and discussion 

After 15 min incubation of granule cells in BSM, neuronal 
mitochondria showed very active accumulation of R123 which 
was indicated by intense green fluorescence after the excitation 
of a cell with blue light (Fig. 1A). The fluorescence of rhoda- 
mine 123 was abolished after treatment of cells with uncoupler 
(0.1 laM FCCP). Cells treated with 100 ~tM GLU for 15 min 
showed swelling of the cytosol within granule cells and only 
traces of green fluorescence were observed within each granule 
cell after loading with R123 (Fig. 1B). At the same time, glial 
cells retain their ability to accumulate this mitochondrial 
membrane potential-dependent probe (Fig. 2B). To prevent 
Ca 2+ entry into the cell as a result of GLU treatment, inhi- 
bitors of both Ca 2+ and NMDA channels were used. COC12 (2 
mM) completely abolished the effect of GLU on the mito- 
chondrial membrane potential (Fig. 1C). MK-801, a specific 
antagonist of NMDA receptors, which blocks GLU-activated 
NMDA channels [13], also prevented mitochondrial deenergi- 
zation and cytosolic swelling of granule cells. A similar pro- 
tective effect was observed when cells before glutamate were 
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Fig. 1. Photomicrograph of living granule cells in cerebellar disso- 
ciated culture demonstrating the mitochondrial localization of rho- 
damine 123. (A) Brightly fluorescing mitochondria can easily be dis- 
tinguished inside granule cells (arrows). The cells were exposed to 
MgZ+-free balanced salt medium for 15 min and then to rhodamine 
123 for 10 min. Bar= 10 I.tm; (B) granule cells after 15 min exposure 
to 100 ~M glutamate in Mg2+-free balanced solution followed by 
10 min treatment with rhodamine 123. Faintly fluorescing granule 
cells (arrows). Mitochondria in these cells do not accumulate rhoda- 
mine 123; (C) granule cells after 15 min exposure to 100 ~tM gluta- 
mate and 2 mM COC12 in Mg2+-free balanced medium followed by 
10 min treatment with rhodamine 123. Brightly fluorescing mito- 
chondria can easily be distinguished inside granule cells (arrows). 

treated with 10 -4 M ruthenium red, which is known to block 
the mitochondrial  Ca 2+ uniporter [14] (Fig. 3A-D).  Besides 
the inability to collapse the mitochondrial  membrane poten- 
tial in the presence of  ruthenium red (Fig. 3B,C), the latter 
also significantly increased cellular viability by abolishing the 

Fig. 2. Photomicrograph of living glial cells in cerebellar dissociated 
culture demonstrating mitochondrial localization of rhodamine 123. 
(A) Cells were exposed to Mg2+-free balanced salt solution for 15 
min and then to rhodamine 123 for 10 rain. Bar= 10 ~tm. Mitochon- 
dria of glial cells accumulate rhodamine and fluoresce intensely. 
(B) Cells after 15 min exposure to 100 ~tM glutamate in Mg2+-free 
balanced solution followed by 10 min treatment with rhodamine 
123. Mitochondria of glial cells accumulate rhodamine and are in- 
tensely fluorescent. 
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F:g. 3. Protectory effect of ruthenium red on the glutamate-induced neuronal damage. (A-C) Rhodamine 123 neuronal staining; (D) cellular 
viability (1, control cells incubated for 1 h in BSM; 2, cells incubated for 1 h in BSM with 10 -4 M ruthenium red; 3, cells incubated for 1 h 
in BSM, then for 15 min with additional 100 p.M glutamate; 4, cells incubated for 1 h in BSM with 10 -4 M ruthenium red, then for 15 min 
wth additional glutamate. After this all ceils stayed in BSM for 2 h and were then stained as described in Section 2. *P< 0.001, when com- 
pared with bar 3, using Student's t-test). (A) Control ceils; (B) cells treated with 100 tiM glutamate; (C) cells treated with 100 p.M glutamate, 
b~ t pretreated with 10 -4 M ruthenium red. Conditions as in D (1,3,4) with the exception that they did not stay for 2 h for the development of 
dtlayed neuronal death). Arrows in A,C show fluorescing mitochondria inside granule cells; in B arrow points to the granule cell which lost 
rl~odamine 123 as a result of Au? collapse on the mitochondrial membrane. 

&~leterious effect of  glutamate (Fig. 3D, bars 3,4). The effect 
o! ruthenium red was due to its interaction with the mitochon- 
d~ial calcium uniporter, as it does not  interfere with Ca 2+ 
transport through the cellular membrane [15]. For  testing 
tt~e possibility that high intracellular Ca 2+ is responsible for 
mitochondrial deenergization induced by GLU,  similar experi- 
rr~ents were performed in the presence of the Ca 2+ ionophore. 
A 23187 (20 p~M, 5 min) alone induced swelling of the cyto- 
piasm and collapse of the mitochondrial membrane potential 
it: a granule cell similar to that with G L U  (not shown). We 
c~ ,nclude that the GLU-induced mitochondrial membrane po- 
tential collapse in granule cells was induced by the rise in 
intracellular Ca ~+. Similar results, albeit after long-term (up 
t¢ 3 h) G L U  exposure of cultivated hippocampal neurons, 
h~tve been obtained by Mattson et al. [9]. However, Dugan 
el al. [16] were not  able to record the lowered mitochondrial 
membrane potential when cultivated murine cells were ex- 

posed to a number  of G L U  receptor agonists. These authors 
initially stained cells with rhodamine and then exposed them 
to G L U  and ionomycin, although we tried the reverse order 
(GLU exposure first and then R123 staining). 

Calcium overload resulting from the neurotoxic action of 
G L U  has been shown to be the main factor inducing cell 
death [17,18]. It was reasonable to assume that a lower mito- 
chondrial membrane potential is also the result of  neuronal  
calcium overloading. Our data support such an assumption, 
since both A23187 and G L U  induced calcium overload and 
resulted in mitochondrial  deenergization. At the same time, 
the activation of G L U  receptors without subsequent Ca 2+ 
entry into the neuron due to the blockade of voltage-depend- 
ent calcium channels as well as N M D A  channels does not  
result in lowering of the mitochondrial membrane potential. 

For  the evaluation of the morphological alterations induced 
by glutamate treatment of cerebellar granule cells electron 
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Fig. 4. Transmission electron micrograph of cultured cerebellar granule cell. (A) Control culture was exposed to Mg2+-free balanced salt solu- 
tion for 15 min. Mitochondria (arrows) appear undamaged. Bar=0.3 mm; (B) cells after 15 min exposure to 100 I, tM glutamate in Mg2+-free 
balanced medium. C and D represent parts of A and B, respectively, with higher magnification. Note mitochondrial swelling and disruption of 
cristae (arrows). Diffuse clumping of heterochromatin (1) and endoplasmic reticulum swelling (2) is seen. 
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microscopy has been used. Control granule cells had a mito- 
chondrial ultrastructure typical for normal cells: mitochon- 
drial cristae were clearly seen, and the mitochondrial matrix 
had a higher density than the surrounding cytoplasm (Fig. 
4A,C). In glutamate-treated cells, the mitochondria were en- 
larged, the density of the mitochondrial matrix was much 
l~wer, and the majority of cristae were damaged (Fig. 
4B,D). Thus, ultrastructural alterations are usually indicative 
oi" the organelles' disfunctioning. Some pathological signs of 
g utamate-treated cells were also seen in some other neuronal 
c,,mpartments: nuclear chromatin was clamped, and signifi- 
c,~nt swelling of Golgi cisternae, and slight swelling of gran- 
u!ar reticulum were apparent. Similar neuronal ultrastructural 
clmnges were observed previously in cultured cerebrocortical 
n~mrons after 5 h of hypoxia or 2.5 h of glucose deprivation 
[!9]. It is impossible to exclude the possibility that, under 
h cpoxic conditions, mitochondrial alterations in neurons are 
tl~e result of a cytotoxic effect of endogenous GLU. The fact 
tl tat ultrastructural changes under hypoxia and glucose depri- 
~,ttion are abolished by competitive glutamate antagonists 
sapports this speculation [19]. Thus, our data provide strong 
e~ridence that the rise in intracellular Ca 2+ concentration in- 
d aced by GLU treatment of neuronal cells results in lowering 
e" the mitochondrial membrane potential, as well as in da- 
n age to the mitochondrial ultrastructure. The tentative expla- 
n ition of such calcium-dependent mitochondrial deenergiza- 
t o n  of granule cells after GLU treatment is induced non- 
s!~ecific permeability transition pore in the inner mitochon- 
d dal membrane, which might be the first step in mitochon- 
c~ rial destruction [20]. In our experiments, cyclosporin A, a 
s!~ecific inhibitor of mitochondrial non-specific permeability 
t ansitions, was without apparent effect on the mitochondrial 
c/~energization induced by GLU. This might be the result of 
tile lack of Mg 2+ in the incubation medium, since Mg 2÷ sig- 
r~ificantly depresses the effect of GLU on the mitochondrial 
~tembrane potential. At the same time Mg 2+ is strongly re- 
c, uired to manifest the effect of cyclosporin A on permeability 
t ansitions [21]. Taken together, these facts lead us to suggest 
tilat GLU-induced, calcium-dependent processes of mitochon- 
t r ia l  deenergization may be among the major causes of neu- 
rma l  cell damage and death. This can take place not only 
ruder exposure to exogenous GLU, but also during brain 
l~,ypoxia and ischemia. An exclusive role of mitochondria 
v as recently emphasized in cellular death where the step of 

mitochondrial permeability transitions seems to be crucial [22] 
makes the data on the loose mitochondrial coupling in intact 
cells under pathological conditions [23] very significant. 
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