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Abstract Plasma-stable liposomes (100 nm) were prepared 
from dioleoylphosphatidylethanolamine (DOPE) and 3--6 tool% 
of a new disulfide-linked poly(ethylene glycol)-phospbolipid 
conjugate (mPEG-DTP-DSPE). In contrast to similar prepara- 
tions containing non-cleavable PEG-phospholipid conjugate, 
thiolytic cleavage of the grafted polymer chains facilitated rapid 
and complete release of the liposome contents. Furthermore, the 
detachment of PEG from DOPE liposomes resulted in liposomal 
fusion. Finally, while formulation of pH-sensitive DOPE/ 
cholesterol hemisuccinate liposomes with mPEG-DTP-DSPE 
abolished the pH sensitivity, cleavage of the PEG chains 
completely restored this property. These are the first examples 
of new useful properties of liposomes grafted with cleavable 
polymer. 

Key words: Liposomes; Drug targeting; 
Phosphatidylethanolamine; Polyethylene glycol derivatives; 
Membrane fusion; Disulfide bond 

1. Introduction 

Incorporation of mPEG-lipid conjugates in liposomal bi- 
layer results in formation of so-called sterically stabilized lipo- 
somes (SSL), which are distinguished by their low RES up- 
take, and prolonged circulation lifetimes [1,2]. SSLs also tend 
to extravasate into pathological foci, which leads to improved 
delivery of liposomal drugload [3,4]. If a cell-internalizable 
targeting device is linked to the PEG coating of a SSL, specific 
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Abbreviations: CHEMS, cholesteryl hemisuccinate; Chol, cholesterol; 
DOPC, 1,2-dioleoyl-sn-glycerophosphorylcholine; DOPE, 1,2-di- 
oleoyl-sn-glycero-3-phosphorylethanolamine; DPX, p-xylene-bis-pyri- 
d in ium bromide ;  DSPE, 1 ,2-d is tearoyl -sn-g lycero-3-  
phosphorylethanolamine; DTSP, dithiobis(succinimidyl propionate); 
DTT, dithiothreitol; HEPES-NS, 20 mM N-hydroxyethyl-piperazi- 
noethanesulfonic acid, 144 mM NaCI, pH 7.2; HPTS, trisodium 8- 
hydroxypyrenetrisulfonate; MES, N-morpholinoethanesulfonic acid; 
NBD-PE, N-(7-nitro-2-1,3-benzoxadiazol-4-yl)-phosphatidylethanola- 
mine (egg transphosphatidylated); PEG, poly(ethylene glycol); mPEG, 
methoxypoly(ethylene glycol); mPEG-DSPE, N-(c0-methoxypoly(oxy- 
ethylene)-a-oxycarbonyl)-DSPE; mPEG-DTP-DSPE, N-(2-(~-meth- 
oxypoly(oxyethylene)-a-aminocarbonyl)ethyl-dithiopropionyl)-DSPE; 
mPEG-DTP-OSu, N-succinimidyl-(2-(o)-methoxypoly(oxyethylene)-c~- 
aminocarbonyl)ethyl-dithiopropionate; PL, phospholipid; Rho-PE, N- 
lissamine-rhodamine B sulfonyl-phosphatidylethanolamine (egg trans- 
phosphatidylated); RES, reticuloendothelial system; SSL, sterically 
stabilized liposomes 

uptake by target cells is observed [5-7]. However, grafting of 
PEG on the liposome surface interferes with the ability of the 
liposome to undergo membrane fusion and destabilization [8] 
which are important mechanisms for making SSL-carried 
pharmaceuticals available to their biological targets. One pos- 
sible solution is to create SSL capable of losing their protec- 
tive polymer coating after they reach their destination site. 
This can be achieved by introducing a cleavable linkage be- 
tween the polymer chain and the hydrophobic moiety of the 
liposome bilayer [9]. 

Here we report the synthesis and properties of SSLs con- 
taining mPEG-DTP-DSPE, a novel, thiolytically cleavable 
conjugate. To ensure fusogenicity, the balance of the liposome 
lipid was DOPE, a non-bilayer forming, fusion facilitating 
lipid [10]. We demonstrate that while DOPE/mPEG-DTP- 
DSPE liposomes are quite stable, thiolytic cleavage of the 
grafted polymer off the liposomal surface leads to vesicle de- 
stabilization and fusion, accompanied by complete release of 
the entrapped contents. In a different formulation, removal of 
the polymeric barrier resulted in a lipid vesicle stable at neu- 
tral pH, but which released entrapped solute in response to a 
lower pH. This is the first demonstration of some of the useful 
properties manifested by SSLs with cleavable PEG-lipid con- 
jugates. 

2. Materials and methods 

2.1. General 
Lipids were purchased from Avanti Polar-Lipids; HPTS and DPX 

were from Molecular Probes; most other chemicals were from Sigma. 
Human plasma (Blood Transfusion Center, Moffit Hospital, San 
Francisco) was thawed and filtered through a 0.45 ~tm sterile filter. 
Horse serum (0.1 ~m refiltered, tissue culture grade) was from Hy- 
clone. Carbamate-linked mPEG-DSPE [11] and mPEG-NH2 [12] were 
synthesized from mPEG (MW 2000) as reported. TLC (CHC13- 
CHaOH-H20 90:18:2) on silica gel G (Analtech) was visualized 
with 12 vapor, Dragendorff and ninhydrin spray reagents [13]. 

2.2. Preparation of mPEG-DTP-DSPE 
Solution of DTSP [14] (873 mg, 2 mmol) in dimethylformamide (10 

ml) was treated with mPEG-NH2 (2 g, 1 mmol) and triethylamine 
(140 ml). After 15 min TLC showed that the reaction was complete. 
The polymer was recrystallized twice from isopropanol and dried in 
vacuo over  P205 .  Yield 1.7 g (73%). 1H-NMR (CD3OD): 8 2.6 (m, 
SCH2CH2CON), 2.85 (s, Su, 4H), 3.0 (overlapping m, 
SCH2CH2CO2-Su and SCH2CH2CON), 3.38 (s, CH3, 3H), 3.64 (s, 
PEG, = 180H). The composition of the product mixture, mPEG- 
DTP-OSu and (mPEG-)2DTP (mol% ratio =75:25), was deduced 
from the integration of the peaks at 2.6, 2.85, and 3.0 ppm. Solid 
DSPE (100 mg) was added to the CHC13 solution of the recovered 
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polymer (600 mg) and triethylamine (240 gl). The suspension was 
incubated at 45°C until it clarified. Complete consumption of DSPE 
was confirmed by TLC. The polymer lipid conjugate (mPEG-DTP- 
DSPE) was purified by dialysis as described [11]. Yield 269 mg (70%). 
1H-NMR (CD3OD): ~ 0.88 (t, CH3, 6H), 1.26 (s, CH2, 56H), 1.58 (br 
m, CH2CH2C=O, 4H), 2.31 (2×t, CH2C=O, 4H), 2.62 (2×t, 
SCH2CH2CON 4H), 2.98 (t, CH2-CONHDSPE, 4H), 3.36 (s, 
CH30, 3H), 3.4 (2×t, CH2N, 4H), 3.64 (s, PEG, ~180H), 3.9 (q, 
CH2CHCH2OP, 2H), 4.0 (t, NCH2CH2OP, 2H), 4.17 and 4.39 (2× 
dd, OC/-L2CHCH2OP, 2H), 5.2 (m, OCH2CHCH20, IH). 

2.3. Preparation and measurements of  liposomal samples 
Liposomes were prepared from the mixture of DOPE or DOPC 

with either mPEG-DSPE or mPEG-DTP-DSPE at the molar ratios 
indicated in the text. pH-sensitive liposomes were prepared from 
DOPE and CHEMS (4:1 molar ratio) [15,16]. Lipid films were hy- 
drated in HEPES-NS or HPTS-DPX solution (30 mM HPTS, 30 mM 
DPX, pH 7.2, adjusted to 290 mOs with NaCI) and extruded through 
two 0.1 gm polycarbonate membranes [17,18]. Untrapped dye was 
removed by gel filtration. Liposome size was determined by dynamic 
laser light scattering, and lipid concentration by phosphate assay [19]. 
Entrapped volume of the liposomes was calculated from the amount 
of incorporated HPTS determined by fluorometry as below. The re- 
lease of entrapped solute was studied by fluorescence-dequenching 
assay using liposomes with entrapped HPTS-DPX. Percent of released 
HPTS was determined as the increase in sample fluorescence 
(J%m = 512 nm, ~%x = 413 nm - pH-independent isosbestic point 
[20]) over that of the preincubation sample (zero release) normalized 
to the increase in fluorescence obtained after lysis of preincubation 
sample with 0.2% Triton X-100 (100% release). Lipid mixing was 
studied by energy transfer assay based on the label dilution [21,22]. 
Liposomes containing 1 mol% each of NBD-PE and Rho-PE were 
incubated with 'unlabeled' liposomes (without fluorescent lipids) in 
the ratio 1:3 (total P L =  10 mM). To prepare the reference sample 
with 100% lipid mixing, an aliquot of the reaction mixture was dried, 
solubilized in chloroform and evaporated in vacuum. The lipids were 
rehydrated in HEPES-NS and dispersed by sonication. The fluores- 
cence intensities of NBD at 525 nm (F52~) and Rho at 590 nm (F590) 
(~x=468 nm) were used to calculate the degree of lipid mixing from 
the formula: 

Percent lipid mixing = 100 × (R-R0)/(R100-R0), 

where R is F525/F~90 of the sample, R0 is F525/F590 of the 'labeled' 
liposomes (no mixing), and R100 is F525/F590 corresponding to 100% 
lipid mixing. To assess stability in blood serum or plasma, liposomes 
with entrapped HPTS-DPX were incubated in 75% human blood 
plasma or 75% horse blood serum, at 37°C and 2-2.5 mM PL. At 
designated intervals, aliquots were taken and the released dye was 
determined as described above. The fluorescence intensity of HPTS 
was not affected by serum, plasma or added detergent. 

3. Results and discussion 

In order to study the properties of  lipid vesicles surface- 
modified with cleavable P E G  chains, we prepared a new di- 
sulfide-linked PEG-phosphol ip id  conjugate. Our choice was 
governed by the well documented stability/lability properties 
of  disulfides in both chemical and biological systems. The 
synthesis of  the disulfide conjugate is summarized in Fig. 1. 
Substitution of  only one of  the succinimidyl esters of  DTSP 
with m P E G - N H z  was facilitated by using an excess of  the 
bifunctional reagent. Under  these conditions the desired prod- 
uct, mPEG-DTP-OSu ,  constituted the bulk of  the polymer 
recovered f rom the reaction mixture (70-80% by NMR) .  
The minor  product,  symmetrical disulfide of  N-(mPEG)-mer-  
captopropionamide,  did not  interfere with the DSPE-coupl ing 
reaction. Hence the recovered polymer was reacted with 
DSPE until the latter was completely consumed. The conju- 
gate, m P E G - D T P - D S P E ,  was purified by removing the excess 
of  PEG-reagents  by dialysis. The structure of  the purified 
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Cleavable by thiolysis 
Fig. 1. Schematic depiction of synthesis of thiolytically cleavable 
mPEG-DTP-DSPE. 

conjugate (single spot by TLC)  was corroborated by 1H- 
N M R .  Thiolytic lability of  the conjugate was confirmed by 
its incubation with an excess of  D T T  resulting in the disap- 
pearance of  the original spot (Rf  = 0.55) on TLC,  and the 
appearance of  two new spots (Rf  = 0.68 and 0.23 for P E G  
and lipid components  respectively). 

At physiological pH and ionic strength D O P E  does not  
form bilayers, but rather exists in an inverted hexagonal 
(HII) phase. To produce liposomes from a DOPE-r ich lipid, 
it must be stabilized in a bilayer phase by an amphiphile with 
bulky and/or repulsing hydrophilic moieties [23], the require- 
ment perfectly satisfied by PEG-phosphol ipid  conjugates. 
D O P E  readily formed liposomes with either m P E G - D S P E  
or m P E G - D T P - D S P E  (2.9 or 5.7 mol% of PL). These lipo- 
somes were similar in size (94-105 nm) and entrapped volume 
(1.27-1.58 l/mol PL) to their D O P C  counterparts. These val- 
ues agreed well with the reported parameters of  membrane-  
extruded unilamellar vesicles [18]. Both phosphol ipid-PEG 
conjugates were not  only potent  stabilizers of  D O P E  bilayers, 
but also provided excellent solute retention in the resulting 
vesicles. Even prolonged (36 h) incubation with plasma or 
serum at 37°C did not  result in significant loss of  entrapped 
membrane-impermeable solute, HPTS (Fig. 2). In fact the 
solute retention of  D O P E  liposomes in the presence of  plasma 
or serum exceeded that of  their D O P C  counterparts. This 
finding may be explained by tighter packing of  PE molecules 
in the bilayer as compared with the PC of the same fatty acid 
composit ion [24]. Liposomes prepared from phospholipids of  
low transition temperature usually require Chol to achieve 
plasma stability [25]. It was recently shown that equimolar  
mixtures of  D O P E  and Chol  containing various amounts  of  
PEG-lipids form liposomes under physiological conditions 
[26,27]. Our results indicate that the cholesterol requirement 
is circumvented by the presence of  PEG-phospholipid.  The 
high stability of  D O P E  liposomes with PEG-phospholipids  
is also in contrast to D O P E  liposomes stabilized with low- 
molecular weight amphiphiles, which leak in the presence of  
plasma or serum [23]. 
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When DOPE/mPEG-DTP-DSPE (100:3) liposomes were 
treated with DTT, a potent thiolytic agent, massive and com- 
plete release of entrapped dye occurred after a short lag phase, 
while the same treatment had no effect on the dye release from 
DOPE liposomes stabilized with the same amount of mPEG- 
DSPE (Fig. 3A). DTT-induced release of the dye from 
mPEG-DTP-DSPE-stabilized liposomes was accompanied by 
visible aggregation and precipitation of the lipid. These ob- 
servations can only be explained by the thiolytic cleavage of 
grafted PEG off the liposome surface and the subsequent loss 
of bilayer stability leading to the transition of DOPE into 
hexagonal and/or isomorphic phase. Such phase transition is 
usually accompanied by fusion and disintegration of the ves- 
icles and by the release of entrapped solute [28]. Inherent 
instability of the bilayer phase of the bulk liposomal lipid 
was necessary for the release of liposome contents since the 
treatment of DOPC/mPEG-DTP-DSPE liposomes with DTT 
under the same conditions produced no leakage (Fig. 3A). It 
is noteworthy that DTT itself, although used in relatively high 
concentration, did not have any effect on the solute release 
from DOPE/mPEG-DSPE liposomes. 

Surface-grafted PEG chains even at low concentration are 
an efficient steric barrier that prevents fusion of liposome 
membranes [8]. Since the fusion potential of a liposome 
stripped of its PEG coating was an important prerequisite 
in the design of the liposomes described in the present 
work, we used a lipid mixing assay to ascertain whether fusion 
may occur after the detachment of PEG from the surface of 
DOPE/mPEG-DTP-DSPE liposomes (Fig. 3B). Indeed, incu- 
bation of DOPE/mPEG-DTP-DSPE liposomes with DTT re- 
suited in lipid mixing consistent with fusion. After a short lag 
phase the degree of lipid mixing gradually increased and 
reached the value of 70% in 2 h (Fig. 3B); then the fusion 
process slowed down but continued until 100% mixing was 
achieved in 24 h (not shown). Note that in the absence of 
DTT neither DOPE/mPEG-DSPE nor DOPE/mPEG-DTP- 
DSPE liposomes exhibited any appreciable lipid mixing, con- 
firming that surface-attached PEG prevents fusion. These re- 
suits indicate that removal of PEG chains from the surface of 
DOPE-liposomes causes not only release of the liposome-en- 
trapped solute, but also mixing of lipid bilayers consistent 
with fusion. Evidently the removal of PEG is complete en- 

l°°t,,H o ' I 
/ I a,,mon plo..mo I I I 

6o 

~ 4o 

2o 

0 
A B C D E F 

Fig. 2. Release of  entrapped fluorescent marker from the liposomes 
at 37°C after 36 h incubation in various media. Lipid compositions: 
DOPE/mPEG-DSPE 100:3 (A) or 100:6 (B); DOPE/mPEG-DTP- 
DSPE 100:3 (C) or 100:6 (D); DOPC/mPEG-DSPE 100:3 (E) or 
100:6 (F). 
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Fig. 3. (A) Release of  entrapped fluorescent marker from the lipo- 
somes incubated with DTT: DOPE/mPEG-DTP-DSPE (filled cir- 
cles); DOPE/mPEG-DSPE (open circles); DOPC/mPEG-DTP-DSPE 
(squares). (B) Effect of  DTT on lipid mixing in the liposomes con- 
taining thiolytically cleavable or non-cleavable PEG-phospholipid. 
DOPE/mPEG-DTP-DSPE with DTT (filled circles) or without DTT 
(open circles); DOPE/mPEG-DSPE with DTT (triangles). PEG-lip- 
id, 2.9 mol%; incubation in HEPES-NS (pH 7.2) at 37°C; DTT (10 
mM). 

ough to allow close contact of lipid bilayers required for fu- 
sion. Interestingly, the lag phase for lipid mixing was shorter 
( ~ 1 0  min) than that for contents release ( ~ 3 0  min). This 
suggests that leakage follows fusion and may result from the 
same bilayer perturbations that lead to fusion. 

Addition of weakly acidic, carboxyl-bearing amphiphiles, 
e.g. CHEMS, stabilizes DOPE in the bilayer phase in a pH- 
dependent manner. When pH drops to levels suppressing io- 
nization of the amphiphile's carboxyl, the lipid undergoes 
phase transition with concomitant release of liposomal con- 
tents. Such pH-sensitive liposomes are potentially promising 
as carriers specific to the acidic environment of endosomes 
and many tumors [15,16,22,23,29,30]. Yet their potential use 
in vivo is hampered by their fast clearance by RES. It is well 
established that RES clearance of liposomes is dramatically 
reduced by surface-grafted PEG chains [1,2,4]. It is not clear, 
however, how steric stabilization with PEG-phospholipids af- 
fects pH sensitivity of liposomes composed of a non-bilayer 
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Fig. 4. Effect of incubation with DTT on the release of entrapped 
dye from the liposomes of DOPE/CHEMS/mPEG-DTP-DSPE 
(80:20:3). Liposomes were incubated in HEPES-NS with 10 mM 
DTT at 37°C and 10 mM PL. At times indicated on each curve, ali- 
quots of liposomes were transferred into fluorometer cuvette con- 
taining 20 mM MES, 144 mM NaC1, pH 5.5, at room temperature, 
and the dye release was monitored. 

forming lipid and an ionizable amphiphile. To answer this 
question, we have prepared liposomes containing DOPE, 
CHEMS, and mPEG-DSPE (80:20:3), and studied the solute 
release of entrapped DPX-quenched HPTS after acidification 
to pH 5.5. In contrast to DOPE/CHEMS (80:20) liposomes 
[15], which are stable at pH 7.4 but at pH 5.5 completely 
released the entrapped dye in a few minutes, there was only 
minor dye leakage under the same conditions from DOPE/ 
CHEMS liposomes stabilized by either mPEG-DSPE or 
mPEG-DTP-DSPE. Such a loss of pH sensitivity after stabi- 
lization of DOPE/CHEMS liposomes with mPEG-DSPE was 
not unexpected since bilayer-stabilizing properties of this com- 
pound are likely to be pH-independent, at least in the pH 4 7 
range, where neither PEG chain solubility nor dissociation of 
the phosphate group in the phosphodiester residue (pKa 2.12) 
are affected. However, during incubation of DOPE/CHEMS/ 
mPEG-DTP-DSPE (80:20:3) liposomes with DTT, their pH 
sensitivity was gradually restored (Fig. 4). This process was 
slower than the destabilization of DOPE/mPEG-DTP-DSPE 
liposomes under similar conditions. The efficiency of dye re- 
lease from DOPE/CHEMS/mPEG-DTP-DSPE vesicles at pH 
5.5 approached that of DOPE/CHEMS liposomes only after 
4 h incubation with DTT. Such a difference can be explained 
by the presence of residual N-mercaptopropionyl residues on 
the surface of the liposomes after the loss of mPEG chains 
which, in synergy with CHEMS, might have an additional 
stabilizing effect on the DOPE bilayer. Overall, however, 
while the incorporation of 2.9 mol% PEG-phospholipid in 
the mixture of DOPE and CHEMS produced liposomes that 
lost their pH sensitivity, this property was restored by the 
cleavage of the polymer chains from the liposomal surface. 

We have illustrated here the design of lipid vesicles steri- 
cally stabilized by PEG surface-grafted via chemically cleava- 
ble bond. While the utility of this system in vivo may require 
further optimization in linkage chemistry and/or lipid formu- 
lation, several features of heretofore unknown liposomes with 
detachable PEG chains were clearly demonstrated. Thus the 
use of cleavable PEG-lipids may provide SSL with the capac- 
ity for membrane fusion and rapid drug release specifically 

triggered by the detachment of the polymer. Fine-tuning of 
the linkage chemistry will allow this to occur in response to 
either natural environment at the target site or to external 
stimuli. In conclusion, lipid vesicles containing labile PEG- 
lipids open the opportunity for a number of new applications 
in further refinement of liposomal drug delivery. 
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