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Abstract A 2.2-kb cDNA clone encoding the endoplasmic 
reticulum (ER) resident protein, calnexin (CLX), was isolated 
from the frog Rana rugosa liver cDNA library and sequenced. 
The sequence encoded 622 amino acids and was 77% similar to 
mammalian CLXs and 56% to mouse CLX-t. In the phylogenetic 
tree, mouse CLX-t was clearly diverged from other CLXs 
including frog. The amino acid sequence of CLX showed regions 
similar to those in frog calreticulin (CLT), although CLX, but 
not CLT, contained a histidme-rich region at the NHz-terminus. 
CLX gene expression was observed only in the liver among 
various tissues examined. Additionally, its expression was strong 
in the liver in 2-month post-metamorphosis frogs, but very weak 
in adults. The results suggest that the CLX gene is expressed in a 
tissue- and stage-dependent manner in the frog, R. rugosa, and 
that CLX is widely distributed in eukaryotic organisms. 
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1. Introduction 

In recent years, calnexin (CLX), a Ca’+-binding protein, 
has attracted considerable attention. CLX represents a new 
type of molecular chaperone [l]. CLX is known to be part 
of the endoplasmic reticulum (ER) quality control machinery, 
binding and folding intermediates through their oligosacchar- 
ide moieties until these substrates achieve proper folding or 
until misfold proteins are degraded [2,3]. In Succharomyces 
pombe, CLX is essential for viability [4]. It is also known 
that the intraluminal domain of CLX shares considerable se- 
quence similarity with another ER Ca2+-binding protein, cal- 
reticulin (CLT), including three KPEDWD repeats in the cen- 
tral proline-rich domain [5,6]. However, the current 
knowledge about CLX and CLT is limited with regard to 
its actual cellular function, structural features, and regulation. 
CLX is suspected to be widely distributed throughout species, 
because its cDNA was isolated and sequenced from mammals, 
microorganisms and plants. It is, however, very important to 
clone the CLX cDNA from animals other than mammals. By 
this, the general structure of CLX would provide evidence of 
whether it has been conserved through evolution. 

Here we report the isolation of the complete CLX cDNA, 
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The nucleotide sequence data of CLT and CLX reported in this paper 
will appear in the DDBJ, EMBL and GenBank nucleotide sequence 
databases with accession numbers D78589 and D78590, respectively. 

and describe its gene expression in the liver of the frog, Rana 
rugosa. 

2. Materials and methods 

2.1. Isolation and sequencing of cDNA clones 
A h gtl0 cDNA library derived from frog liver mRNA was 

screened with rat CLT cDNA as probe according to Maniatis et al. 
[7]. In brief, a h gtl0 phage was adsorbed to MRA bacteria and 
grown on NZYM mates for 7 h at 37°C. Auoroximatelv 5 X lo5 
phages were screened on 15 nitrocellulose filters {Advanteci The fil- 
ters were prehybridized for 4 h at 60°C in a prehybridization solution 
containing 5 x Denhardt’s solution, 0.5% SDS, 6 X SSC and 100 &ml 
of salmon sperm DNA. The filters were hybridized for 16 h at 60°C in 
a fresh hybridization solution with 1 X lo6 cpm/ml of probe, washed 
twice for 15 min at 22°C with 2XSSC and 0.1% SDS, and washed 
once for 15 min at 60°C with 0.2X SSC and 0.1% SDS. Then the 
filters were exposed to Fuji RX X-ray films (Fuji) overnight 
at -80°C. Clones were plaque-purified and subcloned into pUCl9 
vector before sequencing by the dideoxy chain termination method 
VI. 

2.2. Northern-blot analysis 
Total RNA was isolated from unfertilized eggs, larvae, tadpoles and 

different tissues of young and adult frogs. RNA was electrophoresed 
on a 1.0% agarose gel and electrophoretically transferred to nitrocel- 
lulose membranes (Advantec). The RNA was then hybridized with 
32P-labeled 430-bp EcoRIIMvaI fragments of CLX cDNA as probes, 
washed at 65°C in 0.2X SSC and 0.1% SDS, dried and then exposed 
to Fuji RX X-ray films. Tadpoles were staged according to Shumway 
[9], and Taylor and Kollros [lo]. 

2.3. Sequence analysis 
The phylogenetic tree was constructed by the UPGMA method [l 1] 

using the program included with PHYLIP [12]. 

3. Results 

3.1. Isolation of cDNA clones encoding CLX 
From a h gtl0 expression library constructed from an adult 

frog liver mRNA, a 2.2-kb clone was obtained. The insert 
cDNA was subcloned into pUC19 and sequenced, Fig. 1 
shows the nucleotide and deduced amino acid sequences 
from the 2154 bp cDNA clone. Although we have neither 
purified CLX from frog livers nor determined the NHa-termi- 
nal amino acid sequence, we believe the first ATG, beginning 
with nucleotide 38, would be the initiating methionine (Met). 
Reasons are as follows: (a) searching the GenBank data base 
indicated that the amino acid sequence shares 76.7% identity 
with dog CLX [5], (b) dog CLX begins with a 20-residue 
signal sequence and the first Met is followed by positively 
charged and hydrophobic residues [5], and (c) processing sites 
of signal sequences are generally longer than 15 residues [13]. 
The first 20 residues are probably a signal peptide, indicating 
that the cDNA would encode a protein of 602 amino acids 
with a calculated molecular mass of 68 509 Da. This sequence 
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AGAGATTAA- -TCMACTTAG-A- TTAATATATA TAAMAAMG v 1986 
VI * 

CT~aCMClVULMACKSACCATCARC~TCTATTCACTWVLOCCACaA~CCCATGC~~ 2016 

TARACAGTGTGTCTAGAATT TGCAGTCACC~ TCCATCTTTTTCTGTAAAAAARRRAAAA 2154 

Fig. 1. Nucleotide and predicted amino acid sequence of frog liver CLX. The ammo acid sequence deduced from the nucleotide sequence of 
CLX is shown. A signal peptide of CLX was predicted by the hydrophobicity plots [14]. Amino acid residues are numbered negatively within 
the signal sequence with amino acid residue 1 corresponding to the first residue of the mature processed protein. The signal peptide, four re- 
peating motifs, transmembrane region and polyadenylation signal are boxed. 
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Fig. 2. Comparison of the amino acid sequence of different CLXs. The amino acid sequences of CLXs are taken from [15] for rat and mouse, 
[5] for dog and [6] for human CLXs. Dots represent perfect matches and dashes represent gaps. The arrow indicates a putative processing site 
of a signal sequence. 

predicts a large intraluminal domain of 477 amino acids, a and as a result all sequences were found to be extremely 
transmembrane segment of 22 amino acids at positions 461- similar (Fig. 2). This indicates that CLX is highly conserved. 
482 as seen in dog [S] and human [6] and a cytoplasmic car- Fig. 3 shows sequence similarities between frog CLX and an 
boxyl-terminal tail of 103 amino acids. CLX contains 13 his- intraluminal Ca2+-binding protein, calreticulin (CLT). The 
tidines within the first 22 amino acids at the NHz-terminus, overall amino acid sequence of frog CLX revealed only 
which is unusual among CLXs. 39.6% identity with frog CLT. In the amino acid sequence 

Next, the comparison of amino acid sequences of different of CLX, however, there are four internal repeated sequences, 
CLXs was made. As shown in Fig. 2, deduced amino acid designated motif 1 (KIPDPDAXKPEDWDED; residues 271- 
sequences of other known CLX cDNAs were compared, 286, 288-303, 307-322 and 326341) and motif 2 
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Fig. 3. Sequence similarities between frog CLX and CLT. Signal peptides of CLX and CLT were predicted by the hydrophobicity plots [14]. 
The CLX cDNA encodes 602 amino acids, while the CLT cDNA encoded 419 amino acids including an l&residue signal sequence. Amino 
acid residues are numbered negatively within the signal sequence with amino acid residue 1 corresponding to the first residue of the mature 
processed protein. Two regions A and B with homology between CLX and CLT (boxed), and four repeating internal sequences in CLX and 
three in CLT, designated motif 1 (boxed) and motif 2 (boxed), are shown. Identical sequences are indicated with stars. Gaps introduced to op- 
timize alignments are shown with dots. 
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Fig. 4. Evolutionary distance of CLT from different sources at the 
amino acid level. The dendrogram of CLTs from various sources, 
based on the amino acid sequence, was generated by the UPGMA 
method. The GenBank accession numbers of CLX cDNA sequences 
are: mouse, L18888 [15]; rat, L18889 [15]; dog, X53616 [5]; human, 
L10284 [6]; mouse CLX-t, U08373 [18]; A. thaliana, 218242 [20]; S. 
pombe, U13389 [4]. 

(GXWXXPXIXNPXY; residues 344356, 363-375, 377-389 
and 391403). The former region is acidic (D and E contents, 
39%), but the latter is not. Motifs 1 and 2 were also found in 
CLT, and were repeated three times in tandem. There were 
also two regions showing sequence similarity between CLX 
and CLT. Region A was located at residues 153-202 in 
CLX with 52% identity to CLT, and region B at residues 
228-261 with 58% identity. The C-terminus of frog CLX 
has poly E (18 residues), while that of frog CLT has poly D 
(10 residues). In contrast, mammalian CLX and CLT have 
neither poly D nor poly E in the C-region [5]. Frog CLX 
has the motif RKPRRD at the C-terminus. Lysine (K) at 
the -3 position of motif KXKXX or RXKXX has been 
shown to be very important for retaining proteins in the ER 
[16,17]. Frog CLX has Arg (R) at the -3 position. It should 
therefore be examined whether the RKPRRD motif at the C- 
terminus in frog CLX can be an ER retention signal. 

3.2. Phylogenetic tree 
The frog CLX amino acid sequence shares 76.6% similarity 

with mouse CLX, but only 56.2% with mouse CLX-t, 
although the open reading frame of mouse CLX had 60% 
similarity with mouse CLX-t [18,19]. Thus, the phylogenetic 
tree was constructed from the pairwise matrix of genetic dis- 
tance of frog and mouse CLXs and mouse CLX-t at the 
amino acid level with the UPGMA method. In the tree, plants 
were clearly separated from vertebrates (Fig. 4). The evolu- 
tionary distance between mouse CLX and CLX-t was 0.2775, 
while that between mouse and frog CLXs was 0.1553. Mouse 
CLX-t was clearly diverged from frog, human, dog, rat and 
mouse CLXs (Fig. 4). 

3.3. RNA Northern blot analysis 
RNA was extracted from whole larvae, liver of tadpoles 

and various tissues of the frog, R. rugosa. Then the RNA 
was electrophoresed, blotted and probed to determine the ex- 

pression of the CLX gene during development. When the 5’- 
cDNA of CLX was used as probe, a single message of 2.2 kb 
was detected (Fig. 5). In adult frogs, the CLX gene was 
weakly expressed in the liver, but not in other tissues exam- 
ined (Fig. 5X). The expression of the CLX gene was also 
examined in larvae, and the liver of tadpoles and frogs. 
CLT gene expression was not observed in eggs (stage 1) and 
larvae at stages 19-25. However, its expression was fairly 
strong in the liver of 2-month post-metamorphosis frogs, 
but very weak in adult frogs (Fig. 5Y). 

4. Discussion 

CLX has been expected to be ubiquitous among eukaryotic 
organism and conserved through evolution, since CLX 
cDNAs have been cloned from human [15], mouse [15], dog 
[5], plants [20] and microorganisms [4]. However, this is not 
enough to demonstrate that CLX occurs widely in eukaryotic 
organisms. In this study, we report the isolation of a 2.2-kb 
cDNA clone encoding the frog, R. rugosa CLX, which is the 
first report concerning the molecular cloning and sequencing 
of CLX in animals other than mammals. The primary struc- 
ture, deduced from the cDNA sequence of CLX in the frog R 
rugosa, would therefore provide the common features for its 
molecular structure and function. Dog and human CLXs 
share 94% amino acid sequence identity [5,15]. A CLX homo- 
logue isolated from the plant Arabidopsis thaliana has been 
found to be 48% identical with dog CLX [20]. The frog CLX 
is 77% identical with mammalian CLXs such as human, dog 
and mouse. This is reasonable, because amphibians are the 
stock from which birds, reptiles and mammals evolved. The 
proline-rich region of mammalian CLX molecules is con- 
served to a high degree, while the first and last 100 residues 
excluding the last 15 residues at the C-terminus are highly 
diverged. This is also true in CLXs of A. thaliana [20] and 
S. pombe [4]. Based on these observations, it seems likely that 

OTLBH X 

z 
abcdef 

I 

~28s 
418s 

Fig. 5. Expression of CLX mRNA. Total RNA was isolated from 
the ovary (0), testis (T), liver (L), brain (B) and heart (H) of adult 
frogs as described in Section 2. Total RNA was also extracted from 
eggs at stage 1 (a), whole larvae at stages 19-20 (b) and 2425 (c), 
and from liver of tadpoles at stages IX-XIII (d), 2-month post-me- 
tamorphosis frogs (e) and adult frogs (f). 20 ug of RNA was sepa- 
rated by electrophoresis in 1.0% agarose gels, and blotted to nitro- 
cellulose membranes. Total RNA stained with ethidium bromide is 
shown in the panel Z. The position of 28s and 18s ribosomal sub- 
units is indicated with arrows. The size of the mRNA hybridizing 
to the CLX cDNA was estimated to be 2.2 kb. 
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CLX is a widely distributed protein in eukaryotic organisms 
and probably serves a key role in cellular functions such as 
Ca2+ storage and a molecular chaperone, aiding the transfer 
of cell surface molecules in transit from the ER to the outer 
cellular membrane. 

A mouse CLX homologue called CLXt, which is 60% sim- 
ilar to mouse CLX, has been cloned and sequenced [l&19]. 
The amino acid sequence of CLX-t is divided into three re- 
gions, i.e. N- (amino acids l-300), P- (301450), and C- (451- 
611) regions. The P-region was found to be very similar to 
that of CLX [18]. Like CLX, there are two motifs in the P- 
region of CLX-t which are repeated four times in tandem. 
Based on the similarity of amino acid sequences between 
CLX and CLT, Ohsako et al. [18] proposed that mouse 
CLX-t is a CLX variant. However, frog CLX and mouse 
CLX-t share only 56.2% identity. In the phylogenetic tree, 
mouse CLX-t is clearly diverged at the amino acid level 
from CLXs of vertebrates. It might be necessary to reconsider 
whether mouse CLX-t is a member of the CLX family. 

Frog CLX and CLT have the KPEDWD motif in the P- 
region. This is the highest conserved region when CLX mole- 
cules are compared. The P-domain in CLT contains a site for 
high-affinity Ca 2+ binding [21]. Mammalian CLXs also con- 
tain the P-domain which binds Ca2+ with high affinity [15]. 
We have no evidence at present for abilities of Ca2+ binding 
in the P-domain of frog CLX and CLT. The region at residues 
279-339 in frog CLX is 88.7% similar to human CLX, and is 
also suspected to bind Ca2+. However, we need to prepare 
fusion proteins with subdomains of the frog CLX molecule 
in order to analyze abilities of Ca2+ binding. No other tissue 
except liver showed CLX expression. CLX gene expression is 
probably limited to tissue and developmental stages. This 
might be one of the reasons why the molecular cloning and 
sequencing of CLX has not been successful in animals other 
than mammals. The present study does not provide any evi- 
dence concerning the role(s) of CLX in the liver of the frog, R. 
rugosa. Nevertheless, it is of extreme interest that the CLX 
gene is expressed in the liver of frogs after metamorphosis. 
Further investigation will answer questions with regard to the 
role(s) of CLX in the liver. 
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