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The cloning, expression and crystallisation of a thermostable arginase 
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Abstract The gene for the thermostable arginase from the 
thermophilic bacterium 'Bacillus caldovelox" has been cloned and 
sequenced. Expression of recombinant arginase at high levels has 
been achieved in E. coil using an inducible T7 RNA polymerase- 
based system. A facile purification procedure incorporating a 
heat-treatment step yielded 0.2 g of recombinant arginase per 
litre of induced culture. The kinetic properties of the purified 
recombinant protein are essentially identical to the native 
enzyme. The recombinant protein has been crystaHised and one 
crystal form is isomorphous to crystals of the native protein. 
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1. Introduction 

The recent real isat ion tha t  arginases may  play a key regu- 
latory role in nitric oxide metabo l i sm [1,2] and  hence affect 
cytotoxic processes in immunologica l  defence [3] has  rekindled 
interest  in this family of  enzymes. Arginases  (L-arginine ami- 
d inohydrolases ,  E.C. 3.5.3.1) are metal  ion-act ivated  enzymes 
which catalyse the hydrolysis  of  L-arginine to L-ornithine and  
urea. This  react ion is par t  of  the urea  cycle in ureotelic ani- 
mals, and  is the initial step of  arginine ca tabol i sm in cer tain 
aerobic  bacter ia  [4]. Despi te  considerable  research on  tr imeric 
eukaryot ic  arginases,  no tab ly  f rom rat  liver [5-8] and  yeast [9- 
11], these enzymes remain  very m u c h  a mechanis t ic  and  struc- 
tura l  mystery.  The  wide range of  t rans i t ion  (VO 2+, Fe 2+, 
Co 2+, Ni  2+) and  heavy meta l  ions (Cd 2+) tha t  are able to 
subst i tute  for  the in vivo M n  2+ cofactor  of  arginases also 
make  them an  at t ract ive  target  for  the s tudy of  meta l  ion- 
media ted  catalysis and  stabil i ty [12]. 

We  aim to de termine  the X-ray  crystal  s t ructure  of  the 
homo-hexamer ic  arginase f rom the thermophi l ic  bac te r ium 
'B. caldovelox'. Crystals  of  the nat ive enzyme have been ob-  
ta ined [13], bu t  the yields of  arginase f rom "B. caldovelox' are 
low. Here we repor t  the cloning,  sequencing and  expression in 
E. coli of  the 'B. caldovelox" arginase gene, and  crystal l isat ion 
of  the r ecombinan t  protein,  in order  to facilitate fur ther  struc- 
tura l  and  physical studies of  this enzyme. 

2. Materials and methods 

'Bacillus caldovelox' (Bacillus species DSM (Deutsche Sammlung 
von Mikroorganism) 411) was grown with strong aeration at 70°C 
[12]. Enzymes for DNA manipulation were obtained from Gibco 
BRL and Boehringer Mannheim; Pbluescript KS(--) from Stratagene; 
radioisotopes from ICN; Sequenase from USB; pGEM-3Zf(--) and 
Taq DNA polymerase from Promega and oligonucleotides from Oli- 
gos Etc. Inc. 
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2.1. Isolation and sequencing of the arginase gene 
Genomic DNA from "B. caldovelox' was isolated as described for 

Thermus aquaticus [14]. Degenerate oligonucleotides, oligo 1 and oligo 
2, were designed, on the basis of N-terminal protein sequence [12] and 
the conserved internal amino acid sequence -GGDHS-, respectively. 
Oligo 1 : 5'-ATG AAA CCG ATY TCG ATY ATY GGI GTS CCG 
ATG GA-3';  oligo 2: 5 '-RTG RTC SCC SCC MA-3' (M=A or C; 
R=A or G; S=C or G and Y=C or T). 

A 30 cycle PCR was performed using oligos 1 and 2, with a 45°C 
annealing temperature (first cycle 35°C, second cycle 40°C) and a 15 s 
extension at 72°C in the presence of 2 mM MgCI2 with 'B. caldovelox' 
genomic DNA as a template. The PCR product was radiolabelled 
with a2p (Random Primers DNA Labelling System, Gibco BRL) 
and used to probe Southern blots of genomic DNA digested with a 
panel of restriction enzymes (Fig. 2). Hybridisation was carried out in 
5 × Denhardt's reagent, 5 × SSC and 0.5% SDS at 68°C, and the filters 
were washed in 1 ×SSC, 0.1% SDS at 68°C. A hybridising fragment 
containing the arginase gene was subcloned into the vector pGEM- 
3Zf(--), and the coding region of the arginase gene sequenced on both 
strands using Sequenase. Standard techniques were used for DNA 
manipulation and analysis [15]. 

2.2. Subcloning and expression of arginase 
The expression vector pKS-rbs is a derivative of pBluescript KS(- )  

in which the XbaI-Ndel fragment of pT7-7 [16] containing the ribo- 
some binding sequence has been subcloned downstream of the T7 
promoter. The coding region of the arginase gene was amplified 
from the genomic clone in a 30 cycle PCR using Pfu polymerase 
(Stratagene) at an annealing temperature of 52°C with oligonucleo- 
tides 3 and 4, which contain the recognition sites for NdeI and 
HindllI, respectively (underlined). Oligo 3: 5 '-TGG GAG 
ACC ATA TGA AGC CA-3'; oligo 4: 5'-CCC ACA AGC TTT- 
ACA-TGA-AGT-3'. 

The PCR product was digested with NdeI and HindlII and ligated 
into NdeI/HindlII digested pKS-rbs to yield the arginase expression 
plasmid pKS-Arg, in which the initiation codon of the arginase gene is 
7 bp downstream of the ribosome binding site. Cells containing pKS- 
Arg were grown aerobically at 37°C in M1 medium [17], supple- 
mented with 10 mM glucose, 8 gM MnCI2 and 100 gg/ml ampicillin, 
to a culture OD600 of 2.0 and induced by adding IPTG to a final 
concentration of 0.25 raM. Cultures were grown for a further 4 h 
and cells harvested by centrifugation. 

2.3. Protein purification 
The cell pellet from a 650 ml culture (3.7 g) was resuspended in 4.5 

volumes of lysis buffer (100 mM MOPS/NaOH, 50 mM MnC12, pH 
7.5) and lysed by sonication on ice. Cell debris was removed by ultra- 
centrifugation at 220000×g for 1 h at 5°C. The supernatant was 
rapidly heated to and incubated at 70°C for 15 min. After rapid cool- 
ing on ice, insoluble material was removed by centrifugation at 
31000×g for 15 min at 5°C. Solid ammonium sulphate (enzyme 
grade~ BRL) was added to the supernatant to 30% saturation and 
the solution was centrifuged at 31000×g for 10 min at 20°C. The 
supernatant was made 50% saturated by further addition of ammo- 
nium sulphate and the solution was centrifuged as before. The pellet 
was solubilised in three volumes of buffer (200 mM MOPS/NaOH, 
pH 7.5) and centrifuged as before. The supernatant was dialysed 
against 200 volumes of 20 mM MOPS/NaOH, pH 7.5, overnight at 
4°C. After dialysis, any insoluble material was removed by further 
centrifugation at 31 000 × g. 

2.4. Characterisation of recombinant protein 
The purified recombinant protein was subjected to N-terminal se- 

quencing. Arginase activity and protein concentration were deter- 
mined as previously described [12]. 
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2.5. Crystallisation and data collection 
The hanging drop method was used for an initial PEG-based 

screening procedure, which was carried out at 20°C using 64 trial 
conditions in the pH range 4.9~.1 [18]. Reservoirs contained 1 ml 
of screening solutions and the drop contained 5 ~tl of reservoir solu- 
tion and 5 ~tl of protein solution (27 ~tg/~tl protein in 20 mM MOPS/ 
NaOH, pH 7.5). Crystals were mounted and sealed in Lindemann 
tubes and X-ray data collected using the rotation method [19] with 
a Rigaku R-AXIS IIC image plate mounted on a Rigaku RU200 
rotating anode operating at 50 kV, 100 mA. Data were processed 
using the program DENZO [20] and reduced using programs from 
the CCP4 crystallographic package [21]. Self-rotation searches were 
calculated using the program GLFR [22]. 

3. Results and discussion 

The amino acid sequences of  arginases from a variety of  
species were retrieved from version 26.2 of  the O W L  non- 
redundant  protein sequence database [23] and aligned using 
the program C L U S T A L W  [24] (see Fig. 1). This identified the 
amino acid sequence - G G D H S -  as the longest contiguous 
sequence perfectly conserved in arginases from a diverse selec- 

B. caldovelox ................. MKP I S I I GVPMDLCQTRRGVDMGPSAMRYAGVI ERL ER- - 

ARGI BACSU ................ M]DKT I SVI GMPMDLGQARRGVDMGPSAI RYAHL I ERL S D ..... 

A~RG I_AGRT5 I~qGAGE I NAS RHRKENELKTCQ I LGAPVQ S GAS QPGCLMGPDAFRTAGLTQVLTE . . . . .  

ARGI COCIM - - -MTS P ST I KQKF IAKGHQLGV'VAVGFSDGQ PNQGVD- - PSGL I EAGLLDQLRDD .... 

ARGI YEAST ...... METGPHYNYYKNRELS IVLAP FSGGQGKLGVEKGPKYMLI~GLQTS I EDLGWS T 

ARGI XENLA ............. MAKER}{SVGVI GAP FSKC-QPRRGIrEI~GPKYLREAGL I EKL RE ..... 

ARGI HUMAN ............. MSAKS RT I G I I GAP FS KGQPRGGVEEGPTVLRKAGLLEKL KE - - 

h ~I I I 

B. caldovelox .... LHY DI EDLGD I P- I GKA~R-LHEQGDS P~LRNLKA- -VA~EKI~kAAVDQWQ RGR 

ARGI BACSU .... MGyTVEDLGD I P- I NREKI - KN- - - DEELKNLNS - -VLAGNEKLAQEYN}(VI EE}CK 

ARGI_AGRT5 .... LG~AVTDLGDAT PTArE P ELSHPN- - - SAVEIrLDA- -LVGWTRSLSQKALEMARS CD 

/~RGI COCIM .... LEYD I RHDGQVHTYAE FVP - EHDPNHRGMKKPRT - -VSAATQQL S RQVYEHAREGR 

ARGI_YEAST E LE P S I~ EAQ FVG~ KI~KD S TT GGS SVMI DGV}(AKRADLVGEAT KLV~" NSVS KVVQAN R 

ARGI XENLA .... FC-NDVP, DCGDLD- FPDVPN- DTP - - FNNVKNPRT- -VGKAT E I LANAVTAVKKADK 

ARGI HUMAN .... QEC DVI(DYGDLP - FAD I PN- DS P -- FQ [VT~P RS - -VGKAS EQLAGKVAQV~GR 

I I i I ,' 

B. caldovelox FPLVLGGDHS IAI GTLAGVA~YER-LG .... V I WY DA/{GDV]NTA~ T S P S GN I HGIVH? --- 

A2,GI BACSU FPLVLGGDHS IAI GTLAGTA/~Y DN-LG- - - -VIWY DAHGDLNTL ETS P S GN I HGMP- - - 

ARGI_AGRT5 L PVFL GGDHSIWSAGTVS GVAQ RTAE - L GKEQ FVLWLDAHT D LHT L H TTAS GNLHGT PVA Y 

ARGI_COCIM LVLTLGGDHS IAI GT I SGTAKAI RERLGREI~VI WVDAHAD I NRPEDSVS GN I HGI~IPI~%F 

ARGI yEAST FPLTLGGDHS IAI GTVSAVLDKY PD-AG .... LLWI DAHA.D I NT I ESTP S GNLHGC PVS F 

ARGI_XENLA TCQS I GGDHSLAVGT IAGHAAVHPN-LC .... VVWVDA.HA])I NT PS TS PCGNLHGQ PLS F 

ARGI_HUF~ I SLVLGGDHSLAI GS I SGHARVHPD-LG- -- -VIWVDAHTDI NTPLTTT SGNLHGQ PVS F 

I*****II "111 El IN* *** *II I I**I** * 

B.caldovelox LAASLGFGHPALTQ I GGYS PKI KPEHVVLI GVRSLDEGEKKF I REKG I KI Y Ti~EVDRLG 

ARGI_BACSU LAVSLGI GHESLVNLEGYAPKI KPENVVI I GARSLDEGERKY I KE S C-MKVY TI~E I DRLG 

ARGI_AGRT5 YTGQSG ..... FE GL P PLAAPVN P RNVS ~4G I RSVD P EERRRVAE I GVQVAD~VL D EQ G 

ARGI COCIM LTGLAKDDNEDMFGWLQPDNL I S PRKLVY I GLRDVDRAEKRLLREHGI KAFS~DI DKY G 

ARGI YEAST LMGLNKDVP HC p E SL KWVP GNL S P KK LAY I GL RDVDAGE KKI L KDL G IAAF S MY HVDKY G 

ARGI_XENLA LIV~x'ELKAK~AVPGFE~PCLRSKD IVY I GLRDVD PGEHY I LKTLGI K~f L SMI EVDYL}( 

ARGI_HUMA~ LLKELKGKI PDVPGFSWVTPC I SAKD IVY I GLRDVDPGEHY ILKTLGI KY FSMTEVDRL G 

I I I* * I* *I I *I * I* 

B. caldovelox MTRVME ET IAYLKER- - - TDGV}IL S LDLDGLDPSDAPGVGTPVI GGLTY RE S HLAMEMLA 

ARGI BACSU MTKVI EETLDYLSA .... CDG~L S LDL DGL DPND.kPGVGTPWGG i S YRESHLA~Y 

ARGI_AGRT5 V%/RPLEAFLDRV$ k'VS - - - GRLHVS LDVDFLDPAIAPAVGTTVPGGAT FREAHL IMEMLH 

ARGI COCIM I GRVVEMALAH I GQD .... T P IHL S FDVDALD PQWAP STGT PVRGGLTLREGDF IAE S I H 

ARGI_YEAST I NAVI EI~VHPETNGEGP IMC $ YDVDGVDPLY I PATGTPVRGGLTLREGL FLVERI~k 

ARGI_XENLA DD~ETLEYLVGI~H- - KRPIHL S FD I DGLDPS ][APATGTPC PGGRTYREGR ILHEQLH 

ARGI_HU~ I GKVMEETLSYLLGRK- - KRP IHL S FDVDGLD PS FTPATGT PVVGGLTY REGLY I TEE I Y 

I* I I b * *I* I** * ** ** J ** * I 

B, caldovelox EAQ I I TSA~FVEVN ..... PILDER .... NKTASVAVA/24GSLFGE~M ............. 

ARGI _BACSU DAGI I TSAEFVEVN ..... PILDHK .... Nk'T GKTAVELVE S L L GICKL L ............. 

ARGI AGRT5 DSGLVTSLDLAELN ..... PFLDER .... GRTARL I TDLAS SLFGRRVFDRVTTAF ...... 

ARGI_COCIM ETGSLVAMDLVEVN ..... PTLETLGA- - SET I RAGCSLVRSALGDTLL ............. 

A2,GI YEAST E SGNL IALDVVECN . . . . .  PDLAIHD I HVSNT I SAC-CAIARCALGETLL . . . . . . . . . . . . .  

A2,GI _XENLA KTGLLS C-VDT I~STSRGET}(RDV .... EVTVKTAL DMT L S C FGKAR EG FHAS T . . . . . . .  

ARGI _HUMAN KTGLLS GLDIMEVN ..... PSLGKTPEEVTRTVNTAVAI TLAC FGLAREGNHKP I DYLNP P K 

I I * I I + 

Fig. 1. Alignment of the deduced protein sequence of 'B. caldovelox' 
arginase with arginase sequences from a range of species. The align- 
ment was performed using the program CLUSTAL W 1.5 [22]. Po- 
sitions showing absolute conservation of amino acid residue are 
marked with an asterisk; positions showing conservation of amino 
acid type are marked with a vertical line. Protein sequence codes 
are in SwissProt format: BACSU=Bacillus subtilis; AGRT=Agro- 
bacterium tumefaciens; COCIM=Coccidioides immitis; YEAST=Sac- 
charomyces cerevisiae; XENLA=Xenopus laevis; HUMAN=Homo 
sapiens. The sequence of 'B. caldovelox" arginase has been submitted 
to the GenBanldEMBL database; the accession number is U48226. 
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Fig. 2. Autoradiograph (3 min exposure) of a Southem blot of "B. 
caldovelox' genomic DNA fragments separated on a 0.7% agarose 
gel probed with the 32P-labelled 300 bp PCR product. 

tion of  species. This sequence and N-terminal  sequence data 
[12] were used to design oligonucleotides for amplification of  a 
300 bp port ion of  the 'B. caldovelox' arginase gene by PCR.  
Direct sequencing confirmed that the single 300 bp P C R  prod- 
uct coded for the N-terminal  one third of  an arginase, and 
radiolabelled PCR product  was used to probe a Southern blot 
of  'R  caldovelox" genomic D N A  that had been digested with a 
panel of  restriction enzymes (see Fig. 2). Restriction mapping 
of  the hybridising fragments indicated that a 3.2 kb EcoRI/  
BgIII fragment contained the arginase gene. Genomic D N A  
was digested with EeoRI  and BglII and size fractionated by 
agarose gel electrophoresis. A mini-library of  2.9-3.5 kb 
EcoRI/BgllI  fragments was produced by ligation into 
EcoRI/BamHI-digested p G E M - 3 Z f ( - ) .  The ligation mix was 
transformed into XL1-Blue cells by electroporation and colo- 
nies with the desired genomic clone were identified by PCR on 
colony D N A ,  using oligonucleotides 1 and 2 as primers. The 
3.2 kb fragment contained an open reading frame encoding a 
protein of  299 amino acids, with a calculated molecular 
weight of  32.4 kDa. Both the conserved internal sequence 
and the previously obtained N-terminal  sequence were present 
in the deduced amino acid sequence, which is shown in Fig. 3. 

In order to subclone this coding region into an expression 
vector, PCR was carried out using the "B. caldovelox" genomic 
clone as a template and oligos 3 and 4 as primers. A single 
product  of  approximately 900 bp was amplified. This product  
was digested with NdeI and HindlII and subcloned into pKS- 
rbs to form the expression plasmid pKS-Arg.  E. coli 
BL21(DE3) cells were transformed with pKS-Arg by chemical 
means, and small-scale cultures of  these cells were treated with 
IPTG.  Addit ion of  I P T G  to the medium specifically induced 
the expression of  a protein with an approximate molecular 
weight of  31 kDa  as judged by SDS-PAGE (Fig. 4). Crude 
cell lysates from these cultures showed considerable arginase 
activity which was not present in uninduced cultures. This 
expression was subsequently scaled up to larger culture vol- 
umes in order to purify recombinant  protein in large enough 
quantities to undertake crystallographic studies. 

The purification protocol  is an elegant one which effectively 
utilises the thermostable character of  the protein. The yield is 
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-221 GGGGCCTTAGCTCAGCTGGGA~GNGCCTGCTTTGCACGCAG~GGTCATCGGTTCGATC -162 

-161 CCGATAGGCTCCATC~GAGCAGACTGCTTGAC~CCAAAAGCAGCCTGCTCTTTTTTGT -102 

-i01 TATATCGGTATAAATATTCAAAATTTTGTC~GTTGAGTCATCCCCTTTCTTTCCTCTAC -42 

-41~TAAA~CGT~CAGG~CCGGA~GGGAGACAGCATG~GCC~TTTC~TTA 19 
1 M K P  SI 7 

20 TCGGGGTTCCGATGGATTTA~GCAGACACGCCGCGGCGTTGATATGGGGCC~GCGC~ 79 

8 G V  M D L  QT RG D M G  S A M 2 7  

80 TGCGTTATGCAGGCGTCATCG~CGTCTGG~CGTCTTCATTACGATATTG~GATTTGG 139 

2 8 R Y A G V I  RL RL Y D I  DL 47 

140 GAGATATTCCGATTGGAAAAGCAGAGCGGTTGCACGAGC~GGAGATTCACGGTTGCGCA 199 

4 8 D I  GK ER HE G D S R L R N 6 7  

200 ATTTGAAAGCGGTTGCGG~GCG~C~GAAACTTGCGGCGGCGGTTGACC~GTCGTTC 259 

68 LK V A E A N E  LA A V D Q V V  87 

260 AGCGGGGGC~TTTCCGCTTGTGTTGGGCGGCGACCATAGCATCGCCATTGGCACGCTCG 319 
8 8 R G  F P L V L G  DH I A I G T L A I 0 7  

320 CCGGGGTGGCGAAACATTATGAGCGGCTTGGAGTGATCTGGTATGACGCGCATGGCGACG 379 

1 0 8 G V  K H Y  RL V I W Y D A H G D V I 2 7  

380 TC~CACCGCGGA/h~CGTCGCCGTCTGGAAACATTCATGGCATGCCGCTGGCGGCGAGCC 439 

1 2 8 N T A E T S P S G N I H G M P L A A S L I 4 7  

440 TCGGGTTTGGCCATCCGGCGCTGACGCAAATCGGCG~TACAGCCCCAAAATC~GCCGG 499 

1 4 8 G F G H P A L T Q  G G Y S P K I K P E I 6 7  

500 ~CATGTCGTGTTGATCGGCGTCCGTTCCCTTGATG~GGGGAG~G~GTTTATTCGCG 559 

1 6 8 H V V L I G V R S L D E G E K K F I R E 1 8 7  

560 AAAAAGG~TCAAAATTTACACGATGCATGAGGTT~TCGGCTCGG~TGAC~GTGA 619 

1 8 8 K G I K I Y T M H E V D R L G M T R V M 2 0 7  

620 TGG~GAAACGATCGCCTATTTAAAAG~CG~CGGATGGCGTTCATTTGTCGCTTGACT 679 

2 0 8 E E T I A Y L K E R T D G V H L S L D  227 

680 TGGATGGCCTTGACCC~GCGACGCACCGGGAGTCGG~CGCCTGTCATTGGAGGATTGA 739 

228 D G L D P S D A P G V G T P V I G G L  247 

740 CATACCGCGAAAGCCATTTGGCGATGGAGATGCTGGCCGAGGCACAAAT~TCACTTCAG 799 

248 Y R E S H L A M E M L A A Q I I T S 267 

800 CGG~TTTGTCG~GTG~CCCGATCTTGGATGAGCGG~CAAAACAGCATCAGTGGCTG 859 

2 6 8 E F V E V N  IL E R N K T A S V A  287 

860 TAGCGCTGATGGGGTCGTTGTTTGGTGAAAAACTCATGT~TGCATGTGGGCAAAGAGGG 919 

288 A L M G S L G E L M 299 

920 TTGGTTGCGGGATTCACG~TATGAT~T~TTTGTTCCCGCTGTTTGTGAAAGAGGGGC 979 

980 TGCCATTTGTTTGGAGTCCCCTCTTTTNCCGTTGTATGATACAATAAATATGTTGCATGA 1039 

1040 AACTTTTCTTGATCGAGCGCCGTAATATACAGTAAGCCGTGAGCGNGGTATTGTATTTTA 1099 

Fig. 3. DNA sequence of the portion of the genomic arginase clone 
around the coding region. The deduced arginase protein sequence is 
shown below the DNA sequence. Potential --35 and -10 promoter 
regions are highlighted in bold type, and the likely transcriptional 
start site is underlined. The probable Shine-Dalgarno sequence is 
marked in bold italics. The double-underlined region contains sev- 
eral potential stem-loop structures, one of which may act as a tran- 
scriptional termination signal. 

approximately 3040  mg of purified protein per gram wet 
weight of induced cells. Approximately 90% of protein con- 
taminants are removed during heat treatment. The purified 
protein ran as a single band on SDS-PAGE and appeared 
identical to purified native protein. Fig. 4 illustrates the puri- 
fication protocol. Amino-terminal amino acid sequencing of 
the purified recombinant protein was performed and yielded 
the sequence M-K-P-I-S-I-I-G-V-P-M-D-L-G-Q-, showing 
that the recombinant protein was correctly expressed in E. 
coli. 

The specific activity and Km of the protein are 4.6 kU/mg 
(at 60°C) and 3.5 mM respectively. Both values are in close 
agreement with those reported for the native protein [12]. 

Crystals were observed under two separate conditions and 
were subsequently found to be distinct crystal forms: type I 
and type II. Type I crystals were grown in 14% methoxy-PEG 
5000, 200 mM MES/KOH, pH 6.5 and were fully grown with- 

in 24 h. A typical crystal grew as a long needle (10 mmx0.1 
m m x  0.1 mm) and diffracted to 2.2 ,~ resolution. The space 
group was P21212 with cell dimensions a=83.4 ,~, b=146.6 A,, 
c=155.1 ,%. Self-rotation functions calculated for two-fold and 
three-fold axes showed correlation maxima which were con- 
sistent with the arginase hexamer having 32 symmetry. As- 
suming six molecules in the asymmetric unit, the solvent con- 
tent is ,~ 53% which is in the normal range found in protein 
crystals [25]. Type II crystals, grown in 28% PEG 6000, 200 
mM Bis-Tris propane/KOH, pH 8.5, appeared after 48 h and 
were fully grown within 1 week. They grew as square prisms 
(0.4×0.4x0.5 mm) and diffracted to 3.0 A, with c¢=90 °, 
13=90 ° , +~=120 ° and unit cell dimensions of a=81.1 A, 
c=152.0 A. The point group symmetry is 622 and thus assum- 
ing one monomer in the asymmetric unit, the estimated sol- 
vent content is 46% [25]. Arginase undergoes a pH-driven 
cofactor release, and hence the difference in crystal packing 
at low and high pH as illustrated by type I and II crystals may 
reflect a conformational change caused by release of manga- 
nese ions. 

Comparison of the deduced amino acid sequence of 'B. 
caldovelox' arginase with those of other arginases from a di- 
verse range of species (Fig. 1) shows that this is a highly 
conserved family of homologous proteins. Sequence identity 
between the 'B. caldovelox' and B. subtilis enzymes is 70% and 
between 'B. caldovelox' and human arginase is 43%. The latter 
figure seems remarkable considering the distinct metabolic 
roles played by arginase in the two species; clearly the mech- 
anism of action is highly conserved. As well as the sequence - 
GGDHS-, found in all species, a conserved triplet -DAH- is 
present 22 residues downstream. The two histidine residues 
are potential ligands to the cofactor in the active site of argi- 
nase. 

A number of general rules have been suggested in the lit- 
erature which attempt to account for the thermostability or 

1 2 3 4 5 6 7 

I Dg 

O 
+ _ 

Fig. 4. SDS-PAGE analysis of 'B. caldovelox' arginase purification 
and expression. A 15% acrylamide gel running a Laemmli buffer 
system was stained with Coomassie blue R-250. Lanes: (1) cell ly- 
sate; (2) cell-free supernatant; (3) heat treatment supernatant; (4) 
dialysed (NH4)2SO4 pellet; (5) SDS-7 molecular weight markers 
(Sigma) containing a mixture of seven proteins of molecular weights 
66, 45, 36, 29, 24, 20 and 14 kDa; (6) IPTG-induced BL21(DE3)/ 
pKS-Arg (whole cell lysate); (7) IPTG-induced BL21(DE3)/pKS-rbs 
(whole cell lysate). 
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otherwise of proteins. For instance, comparison of thermo- 
stable proteins with non-thermostable homologues seems to 
indicate that increased thermostability correlates with de- 
creased cysteine, asparagine and glutamine residue content 
[26], or an increased proline residue content [27]. Cysteine, 
asparagine and glutamine are thought to be susceptible to 
covalent damage at high temperatures (e.g. deamidation) 
and thus tend to be replaced in thermostable proteins [26]. 
A comparison of the amino acid sequence of the arginase 
from 'B. caldovelox' with that of the arginase from the meso- 
phile B. subtilis shows that there are fewer cysteines (none 
compared to one) and asparagines (6 compared to 13) in 
the more thermostable protein. However, the number of pro- 
lines remains unchanged at twelve, and the number of gluta- 
mines increases from two to five. Clearly, the phenomenon of 
protein thermostability cannot be generally explained by ami- 
no acid sequence data alone. 

However, the 'B. caldovelox" arginase does contain an in- 
creased number of charged amino acid residues compared to 
the B. subtilis protein, which would appear to give weight to 
the hypothesis that thermostability is achieved by an increase 
in the number of salt bridges buried within the protein [28]. 
That said, it is clear that protein thermostability is not a 
property which can be convincingly explained by general 
rules, and specific structural information is required to fully 
understand and analyse the interactions that are responsible 
for the increased thermostability of a protein relative to non- 
thermostable homologues. 

The previous structural studies on 'B. caldovelox" arginase 
[13] were frustrated by the low yield of native protein: even 
large-scale fermentations produced only 0.1 mg of purified 
protein per litre of culture. The expression and facile purifica- 
tion of recombinant enzyme presented here allow the structur- 
al characterisation to be a viable project. The type I crystals 
are isomorphous to those previously grown from native pro- 
tein, and the search for heavy atom derivatives is under way. 
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