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Abstract Hypokalaemic periodic paralysis (HypoPP) is an 
autosomal dominant muscle disease which has been linked to 
point mutations in the skeletal muscle L-type calcium channel cq 
subunit (~ls).  Here, we have introduced one of the point 
mutations causing HypoPP (R528H) into cDNA of the rabbit 
Cqs. Expression of either the wild-type ~tsor the mutant R528H 
Cqs (~ls-Rszsn) subunits was obtained in mouse Ltk cells using 
a selectable expression vector. The Cqs-Rs28n subunit led to the 
expression of functional L-type Ca z+ channels. Corresponding 
whole-cell Ba 2+ currents exhibit very slow activation and 
inactivation kinetics, typical for recombinant skeletal Ca 2+ 
channel currents. Voltage-dependent activation and inactivation 
properties were similar for ~ts-and ~IS-RS2Sn, as well as their 
sensitivity to the dihydropyridine agonist Bay K 8644. Differ- 
ences in Cqs-and ~ls-Rs28n-directed channels reside in the Ba 2+ 
current density, which was significantly reduced 3.2 fold in cells 
expressing ~lS-RS2Sn It was concluded that the R528H mutation 
of Cqs results in minor differences in the electrophysiological 
properties but significantly reduces the whole-cell Ca z÷ channel 
current in its amplitude. 
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1. Introduction 

Hypokalaemic periodic paralysis (HypoPP) is a genetic 
muscle disorder of autosomal dominant inheritance character- 
ized by acute attacks of muscle weakness concomitant with a 
decrease in the blood potassium level. Linkage studies have 
shown that the HypoPP gene maps to chromosome lq31 32, 
and colocalizes with the gene encoding the cq subunit 
(CACNL1A3) of the skeletal muscle L-type Ca 2+ channel 
[1]. The L-type Ca 2+ channel in skeletal muscle is located in 
the membrane of transverse tubules and consists of five sub- 
units, cq, c~2/8, [3 and 7. It mediates Ca 2+ entry and acts as a 
voltage sensor for the control of calcium release from the 
sarcoplasmic reticulum [2]. Three point mutations resulting 
in non-conservative changes were found within the coding 
sequence of CACNL1A3 [3,4], establishing it as the HypoPP 
gene. These mutations are responsible for arginine-to-histidine 
(R528H, RI239H) and arginine-to-glycine (R1239G) substitu- 
tions. These mutations occur within the IIS4 and IVS4 regions 
of the DHP receptor eq subunit, that are likely to serve as the 
voltage sensor of this ion-conducting subunit [5]. 

The functional consequences of HypoPP mutations are just 
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being explored and pioneer studies have indicated that myo- 
tubes cultured from HypoPP patients exhibit abnormal Ca 2+ 
channel activity [6,7]. The mutations would result in very dis- 
tinct Ca 2+ channel behaviour: a strong reduction of current 
amplitude with the R1239H mutation [6,7]; and a large hy- 
perpolarizing shift of 40 mV in the voltage-dependent inacti- 
vation with the R528H mutation [7]. These preliminary stu- 
dies suggest a loss of function of HypoPP mutated Ca 2+ 
channels which has now to be probed at the molecular level. 

The functional consequences of HypoPP mutations can be 
studied at the molecular level since the cDNA encoding rabbit 
skeletal muscle •1 subunit (Cqs) has been cloned [8,9] and 
expressed in mammalian cells [10]. Using muscular dysgenesis 
(mdg) myotubes that are specifically defective in the func- 
tional Cqs subunit but express the other subunits, c~2/~5, [~ 
and 7, as well as the cardiac isoform, alc  [11], recomplemen- 
tation with recombinant alS restored Ca 2+ channel activity as 
well as excitation-contraction coupling [12]. Using mouse 
Ltk- cells (L cells), a cell line which is devoid of the expres- 
sion of any Ca channel subunit [13], expression experiments 
have revealed that a~s encodes by itself functional Ca 2+ chan- 
nels with typical kinetics properties of skeletal muscle L-type 
Ca 2+ channels [13 16]. 

The purpose of our study was to characterize the channel 
activity of the R528H-mutated cq s subunit. Because this mu- 
tation takes place inside the voltage sensor segment IIS4 (for 
review, see [5]), it was hypothesized that activity of the Cqs 
channel might be altered [3]. To avoid putative regulation by 
auxiliary subunits [10,13], we have expressed the 0~IS_R52S H 
subunit in L cells. Previous functional studies of recombinant 
skeletal muscle L-type Ca 2+ channels in L cells [13,16] were 
performed using a cell line named LCa.11, stably transfected 
with rabbit Cqs [14]. Here we have optimized a transfection/ 
selection procedure, using a selectable expression vector. We 
present evidence that the R528H mutation results in minor 
changes in the electrophysiological properties of the Cqs sub- 
unit but significantly affects current density. 

2. Materials and methods 

2.1. Molecular biology 
The wild-type rabbit Cqs cDNA subcloned into the pCEP4 expres- 

sion vector containing a selectable marker (Invitrogen) was generously 
provided by Dr. L. Garcia (Paris). Transfection with this construct 
(pCEP4cqs) confers resistance to cells cultivated in the presence of 
hygromycin B [17]. The G1583A mutation in the cq s cDNA, which 
results in R528H substitution in the Cqs protein (als RS2SH), was in- 
troduced using a site-directed mutagenesis procedure (Muta-gene, 
Bio-Rad) using the phosphorylated reverse oligonucleotide 5'- 
CGGATGCAGTGCAACACGG-Y and verified by sequencing (Se- 
quenase, USB). The final construct that contains the mutation was 
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named pCEP40hS_R528H. Plasmid DNA for mammalian transfection 
was purified by adsorption to macroporous silica gel anion exchange 
columns (Qiagen). The expression of either czlS or CqS-R528H mRNA 
in transfected cells was verified using RT-PCR. Total RNA from the 
transfected cells was prepared as described earlier [18]. Reverse tran- 
scription was performed using Superscript II (Gibco), according to the 
manufacturer's instruction. The PCR amplification was performed as 
described earlier [3]. The presence of the G1583A mutation in 
~qS-RS~8H transfected cells was verified by the loss of a Bbvl restriction 
site in the corresponding sequence [3]. 

2.2. Cell culture and transfection 
The Ltk- cells (mouse L cells) were grown in DMEM supplemen- 

ted with 10% fetal calf serum, 1.5 mM glutamine, 0.1 gg/ml strepto- 
mycin and 100 UI/ml penicillin (Eurobio). The day before transfec- 
tion, cells were plated to 40-50% confluency on glass coverslips. The 
transfection was performed using Lipofectamine (Gibco), according to 
the manufacturer's instructions. The day after transfection, culture 
medium was supplemented with 200 gg/ml hygromycin B (Sigma), 
and maintained for up to 5 days in this culture condition, prior to 
electrophysiology. 

2.3. Electrophysiology and data analysis 
Barium (Ba 2+) currents were recorded in the whole cell configura- 

tion as described earlier [16,19]. The bathing solution was (in mM): 
Ba(OH)2 40, glutamate, 40; N-methyl-n-glutamine, 80; HEPES, 10; 
MgCI2, 2; pH adjusted to 7.4 with CH3SOaH. Pipettes were filled 
with (in mM): N-methyl-D-glutamine, 110; EGTA, 15; HEPES, 10; 
MgCI2, 2 pH adjusted to 7.3 with CH3SOaH. Pipettes had resistances 
between 2 and 5 Mf~. Capacitive transients were minimized using the 
analog circuitry of the amplifier (Axopatch 200A, Axon Instruments, 
CA). Ba 2+ currents were recorded at various digitizing rates and fil- 
tered at 500 Hz using a four-pole Bessel filter. Stimulation of cells, 
data acquisition and analysis were performed using the pCLAMP 
package (version 5.5; Axon Instruments) and Excel (version 5; Mi- 
crosoft). Inactivation curves were fitted with the Boltzmann equation 
(I= l - l /[ l+exp((V-Vo.5)lk)]) ,  where V0.5 represents the potential 
for half-inactivation. Activation curves were deduced from the cur- 
rent-voltage relationships according to a modified Boltzmann equa- 
tion (I= g ( V -  Vrev)/[1 + exp((V- V0.5) / k)]), where Vos represents the 
potential for half-activation. Values were expressed as mean + S.E.M. 
Statistical comparisons between groups of values were made using 
Student's unpaired t-test, where P < 0.05 was considered significant. 

3. Results and discussion 

To test whether  the al tered behav iour  of  L-type skeletal 
muscle Ca 2+ channels  in H y p o P P  myotubes  [6,7] was specifi- 
cally related to a b n o r m a l  activity of  the Cqs subuni t ,  it was 
necessary to s tudy the funct ional  proper t ies  of  Cqs R52SH re- 
c o m b i n a n t  channe ls  in a suitable expression system. Mouse  L 
cells tha t  dit  no t  present  any  Ca 2+ channe l  activity (n = 42; see 
Fig. 1A) even in the presence of  1 ~tM Bay K 8644 ( n =  15; no t  
shown) were chosen.  Fo r  the purpose  of  our  study, Cqs and  
O~1s R528H c D N A s  were subcloned in a selectable expression 
vector  (pCEP4)  con ta in ing  the gene encoding hygromycin-B-  
phospho t rans fe rase  (see section 2). Fol lowing t ransfect ion 
with p C E P 4 a l s  or  pCEP4aas-R52sn, cells surviving in the 
presence of  hygromycin  B (200 gg/ml) for up to 5 days (less 
than  5%) were studied for  their  expression of  Ca 2+ channels.  
Ba 2+ current  recordings clearly indicated tha t  expression of  
O~IS or 0~1S_R528 H leads to funct ional  Ca 2+ channels  (Fig. 1B 
and  C, respectively). This result  rules ou t  the hypothesis  tha t  
H y p o P P  Ca 2+ channels  might  be silent. Ba 2+ currents  were 
detectable in 100% of  the tested cells (n = 58), demons t r a t ing  
the reliability o f  the t ransfect ion/select ion procedure.  

Here we show tha t  b o t h  Cqs-and Cqs a528H-directed currents  
exhibi t  very slow act iva t ion  kinetics (Fig. 1B,C). The  t ime-to- 
peak  was 3 .6+0 .8  s ( n = 5 )  and  3 . 3 + 0 . 7  s ( n = 7 )  for alS and  
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Fig. 1. Ba 2+ currents in mouse L cells expressing Cqs or alS-~2SH. 
Holding potential (HP) was - 8 0  mV. The presented traces were re- 
corded for two depolarizing test pulses ( -20  and +20 mV). (A) No 
inward current was recorded in a non-transfected cell using a 1.5 s 
pulse. The membrane capacitance of this cell was 61 pF. (B) Inward 
Ba 2+ current recorded in a cell transfected with pCEP4cqs, using a 
5 s pulse. The membrane capacitance of this cell was 48 pF. (C) 
Similar to B, for a cell transfected with pCEP4ota s R52SH. The mem- 
brane capacitance of this cell was 79 pF. 

alS_R52SH, respectively. The  cur ren t  voltage (I/V) relat ionships 
for a l s - a n d  Cqs-R52sH-directed Ba 2+ currents  can be superim- 
posed (Fig. 2A). Act iva t ion  occurred near  - 1 0  m V  and  the 
peak of  the I / V  curves was ob ta ined  at +20 inV. Inact iva t ion  
kinetics were de termined  using a 1 min depolar izing pulse, 
which is required to reach complete  inact ivat ion (see also 
[13]), b o t h  for ~ l s - and  Cqs_Ft52sH-directed Ba 9+ currents  
(Fig. 2B). Time cons tan ts  of  inac t iva t ion  were found  to be 
similar for  a l s -d i rec ted  Ba 2+ currents  (x = 8.3 + 2.4 s; n = 3) 
and  for Cqs Ft52sn-directed Ba 2+ currents  ( x = 9 . 0 + 1 . 2  s; 
n = 6 )  recorded at  +20 inV. Vol tage-dependent  ac t ivat ion 
and  inact ivat ion curves were cons t ruc ted  for ~ls-di rected 
Ba 2+ currents  (Fig. 2C) and  for Cqs RS28H-directed Ba 2+ cur- 
rents (Fig. 2D). The  potent ia l  for  hal f -act ivat ion (V0.5) was 
- - 1 4 + 3  mV ( n = 6 )  for Cqs, and  - 9 + 3  mV ( n = 5 )  for 
aaS-RS2SH. These values were not  significantly different when  
compared  using S tudent ' s  unpa i red  t-test (P  > 0.05). Part icu- 
lar a t ten t ion  was given to determine steady-state inact ivat ion 
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Fig. 2. Electrophysiological properties of als-and alS-R52su-directed Ba 2" currents. (A) Normalized current-voltage relationships for 
Ohs(squares, n = 3), and alS-R52SVl (circles, n =4). (B) Superimposition of traces recorded during l min pulses to +20 mV (HP -80  mV) in a 
cell transfected with als (upper trace), and a cell transfected with Cqs ar,2sH (lower trace). (C) Voltage-dependent activation (filled squares) and 
inactivation (open circles) curves for Cqs-directed Ba 2+ currents. (D) Voltage-dependent activation (filled squares) and inactivation curves (open 
circles) for Cqs-a52sH-directed Ba 2+ currents. (E) I/V curve for control (filled squares) and Bay K 8644-stimulated (open squares) currents in a 
cell transfected with aas. (F) I/V curve for control (filled squares) and Bay K 8644-stimulated (open squares) currents in a cell transfected 
(~lS-R528H. 

properties precisely. The prepulse durat ion was 90 s, and the 
cells were stimulated every 4 rain to allow total recovery of the 
maximum of current amplitude between two episodes. Indeed, 
the potential values for half-inactivation were similar ( - 4 6  + 3 
mV, n = 7  and - 4 5 + 4  mV, n = 9 ;  for Cqs and Cqs R52SH, re- 
spectively). Both for aas-and CqS-Ra2sH-directed Ba 2+ currents 
were sensitive to a dihydropyridine agonist, Bay K 8644 (Fig. 
2E,F), and a dihydropyridine antagonist, PN 200-110 (not 
shown). Following Bay K 8644 application (1 p.M), the cur- 
rents were enhanced 6-7 fold in average for Cqs (n = 6) and for 
121S-R528H (n = 5). A leftward shift of  the I / V  curve (10 mV) 
was observed following Bay K 8644 application, as previously 
described [13]. Altogether, our data indicate that Cqs-and 
~as-a52sH-directed Ba 2+ currents are similar in their electro- 
physiological parameters. 

The most striking effect related to the expression of recom- 
binant  ~lS-R528H channels was observed on current density 
(Fig. 3). To analyze this parameter more precisely, the trans- 
fection procedure was carefully controlled and the current 
recordings were performed using a double blind strategy. 
The Ba 2+ current density was 3.2 fold lower in L cells trans- 
fected wit ~lS-R~2Sla (0.24 + 0.06 pA/pF,  n--  15), compared to 
the cells transfected with wild-type alS (0.78+0.26 pA/pF, 
n = 14). This result, obtained from 3 independent experiments, 
is illustrated in figure 3. 

Thus, an important  finding of our study is that the point 
muta t ion R528H significantly reduces the Ba 2+ current den- 
sity in L cells. Under  our experimental conditions, we can 

postulate that the amplitude of Ba 2+ currents is a good index 
of the cq-directed Ca 2+ channel function. The decreased ac- 
tivity of alS-R52su channels can be due to either abnormal  
electrophysiological properties or to alterations at the protein 
level, such as maturat ion or traffic. To date, three point muta- 
tions (R528H, R1239H and R1239G) of Cqs, linked to the 
HypoPP disease, have been described [3,4]. The relationship 
between various genotypes (R528H and R1239H) and specific 
phenotypes is not  immediately obvious, since no clinical signs 
preferentially associated with either mutat ion has been found 
[20]. In human myotubes, several types of Ca 2+ channels co- 
exist [21], which makes their electrophysiological dissection 
difficult. Nevertheless, recent studies by Lehmann-Horn  and 
co-workers [6,7] have described a strong reduction in the am- 
plitude of the slow L-type Ca 2+ current in cultured myotubes 
from patients with the R1239H mutat ion.  Unexpectedly, no 
such reduction in current amplitude was observed in myo- 
tubes from a patient with the R528H mutat ion [7]. Because 
HypoPP myotubes also express the wild type isoform, Cqs, as 
well as the auxiliary subunits, (zJg, [3 and 7, it is possible that 
some compensatory mechanisms mask the mere biophysical 
consequence of the HypoPP point muta t ion identified in our 
study. 

The decrease in Ba 2+ current density with (~1S-It528H is un- 
likely to be caused by a change in the macroscopic electro- 
physiological properties of als  a52su-directed channels, since 
we did not  observe any significant differences in the Ba 2+ 
current parameters, such as kinetics, voltage-dependent acti- 
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Fig. 3. Histograms representing averaged current density in cells 
transfected with cq s (left) and cells transfected with CqS-RS2SH 
(right). The difference was found significantly different (P<0.05) 
using unpaired Student's t-test (asterisk). 

vat ion and inactivation, when compared to ~ts-directed chan- 
nels. Moreover, our  data regarding wild-type ~lS recombinant  
channels clearly match with previous studies performed in L 
cells, and refering to the L C a . l l  cell line [13 16,19]. Surpris- 
ingly, Sipos et al. [7] reported that R528H mutat ion,  but  not  
R1239H, resulted in a profound change in the voltage-depend- 
ence of inactivation, since the potential for half-inactivation 
was shifted by 40 mV towards negative potentials. This latter 
result, was obtained in cultured myotubes of only one patient 
and should be substantiated. Replacement of arginine, a posi- 
tively charged residue, into histidine corresponds to a neutra- 
lizing mutat ion.  Comparatively, a similar muta t ion (R1448H) 
occurs in the IVS4 segment of the a subunit  of  Na + channels 
(hSkM1) of patients with paramyotonia  congenita and is re- 
sponsible for only a slight hyperpolarizing shift in steady-state 
inactivation: less than 5 mV [22]. This behaviour was ob- 
served with recombinant  Na + channels when the R1448H 
mutat ion was introduced either into the rat or the human 
SkM1 sequences [22]. Whether the R528H mutat ion is directly 
responsible for a large hyperpolarizing shift (40 mV) in the 
steady-state inactivation should have been observed in our  
experiments. Another  possibility is that auxiliary subunits, 
which are missing in L t k -  cells, may exert a distinct modula-  
tory role on Cqs-and (Xls_a52sH-directed Ba 2+ currents. It is 
unlikely that the discrepancies between our study and Sipos 
et al. [7] are related to the use of alS eDNA from rabbit  in our  
experiments. Indeed, the full length eDNA encoding for the 

human  Cqs has recently been cloned [23] and shows 92% of 
homology with its rabbit  counterpart  [8,9]. Within the IIS4 
segment, the homology reaches 95% and only a conservative 
amino-acid substitution can be found. Therefore, from the 
model of the R1448H mutat ion of the Na + channel described 
above, it is tempting to speculate that the R528H mutat ion is 
equivalent in terms of function when introduced within the 
rabbit  Sis sequence. 

The preliminary electrophysiological studies of the HypoPP 
mutat ions have suggested a loss of function as the major 
alteration of the mutated Ca 2+ channels (for a recent review, 
see [24,25]). Our study indicates that this phenomenon relies 
directly to a reduced Ca 2+ channel activity of (~1S-R52SH, in- 
dependently of a substantial change in electrophysiological 
parameters. How a decrease in Ca 2+ current amplitude might 
interfere with proper excitation-contraction coupling is still 
unclear. Moreover, the origin of muscle paralysis and decrease 
in blood potassium [26] remains unexplained. Consequently, 
further studies of the mutated CqS-Rs2sH protein should also 
probe additional parameters, such as subunit  interaction, pro- 
tein quant i ta t ion or cellular localization, that would provide a 
better understanding of the HypoPP Ca 2+ channel defect. 
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