
FEBS 16744 FEBS Letters 381 (1996) 24%251 
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Abstract The effects of the WT on store-mediated Ca 2+ entry 
and protein tyrosine phosphorylation were investigated in fura-2- 
loaded human platelets. Wortmannin (2 laM) attenuated the rise 
in [Ca2+]i caused by Ca 2÷ entry while having no effect on the 
mobilisation of Ca 2+ from internal stores. It also reduced store- 
depletion-evoked protein tyrosine phosphorylation. These find- 
ings demonstrate that WT is an inhibitor of tyrosine phosphor- 
ylation and store-mediated calcium entry and provide further 
evidence for the involvement of a tyrosine phosphorylation step in 
the link between Ca 2÷ store depletion and Ca 2+ influx in human 
platelets. 
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1. Introduction 

In many cell types including human platelets, depletion of 
intracellular Ca 2+ stores evokes influx of Ca 2+ across the 
plasma membrane [1-3]. However, the mechanism of this 
store-mediated (or 'capacitative') Ca 2+ entry [4] remains un- 
certain. One proposal is that protein tyrosine phosphorylation 
plays a role. Vostal and coworkers suggested that cytosolic 
and intracellular store Ca 2+ antagonistically control tyrosine 
phosphorylation and hence Ca 2÷ entry in human platelets [5]. 
In this model, store-depletion is proposed to activate a tyro- 
sine kinase resulting in enhanced tyrosine phosphorylation 
and hence promotion of Ca 2+ influx. Internal store refilling 
is proposed to activate a tyrosine phosphatase which would 
reduce tyrosine phosphorylation and terminate Ca 2+ influx 
[5]. This hypothesis is supported by the finding that various 
known tyrosine kinase inhibitors reduce Ca 2+ entry evoked by 
agonists and by store-depletion in platelets whilst having little 
or no effect on the release of Ca 2+ from intracellular stores [6, 
7]. Similar results have been reported with other cell types [8- 
10]. We have shown that depletion of the intracellular Ca 2+ 
store in platelets results in an increase in protein tyrosine 
phosphorylation which is reversed when the stores are refilled 
with divalent cations [11]. The ability of refilling with a par- 
ticular divalent cation to reduce tyrosine phosphorylation cor- 
relates with its ability to reduce Mn 2+ entry [11]. These ob- 
servations support the existence of a tyrosine phosphatase 
activity associated with full intracellular Ca 2+ stores. 

The fungal metabolite wortmannin (WT) has been shown to 
inhibit several agonist evoked platelet responses including ser- 
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otonin secretion and aggregation [12]. In a number of cell 
types, including platelets, WT has been reported to suppress 
Ca 2-- entry evoked by both agonists and store-depletion 
[13,14]. Hence, we have investigated the effects of WT on 
store-depletion evoked Ca 2+ influx and protein tyrosine phos- 
phorylation in human platelets. 

2. Materials and methods 

2.1. Materials 
Fura-2/AM was from Molecular Probes (Eugene, OR, USA). Apyr- 

ase (grade V), aspirin, thapsigargin and WT were from Sigma (Poole, 
Dorset, UK). Ionomycin was from Calbiochem (Nottingham, UK). 
All other reagents were of analytical grade. 

2.2. Methods 
Human platelets were prepared as described elsewhere [1]. Briefly, 

platelet-rich plasma was incubated at 37°C with 2 gM Fura-2/AM for 
45 min. Cells were collected by centrifugation and resuspended in 
Hepes-buffered saline (145 mM NaCI, 5 mM KC1, 10 mM NaHepes, 
1 mM MgSO4, 10 mM D-glucose, 20 gg/ml apyrase, pH 7.4 at 37°C). 
Fluorescence was recorded from aliquots of stirred platelet suspen- 
sions at 370C using a Cairn Research Spectrophotometer (Cairn Re- 
search Ltd., Sittingbourne, Kent, UK) with excitation wavelengths of 
340 and 380 nm and emission at 500 nm. Changes in [Ca2+]i were 
monitored using the 340/380 nm fluorescence ratio and calibrated 
according to the method of Grynkiewicz et al. [15]. 

Protein tyrosine phosphorylation was detected by gel electrophor- 
esis and Western blotting using a specific anti-phosphotyrosine anti- 
body essentially as described previously [6] but blocking with 10% (w/ 
v) bovine serum albumin instead of milk protein. Densitometric meas- 
urements were made with the use of a Quantimet 500 densitometer 
(Leica, Milton Keynes, UK). 

3. Results and discussion 

Fig. 1 shows the effect of WT on the change in platelet 
[Ca2+]i following the sequential additions of thapsigargin 
and Ca 2+ to platelets initially in the absence of external 
Ca 2+ (presence of 0.5 mM EGTA). Preincubation with WT 
had no effect on the thapsigargin-evoked [Ca2+]i rise. After 
addition of thapsigargin the mean peak [Ca2+]i elevations 
above basal were 45+5 nM (mean+S.E.M.) in controls, 
52 + 7 nM with 100 nM WT (Student's paired t test, difference 
of means, 0.5 > P>0 .1 ,  n=7)  and 39+6 nM with 2 gM WT 
(0.1 > P > 0.05, n = 8). However, preincubation with 2 gM 
WT significantly reduced the rise in [Ca2+]i occurring after 
the addition of 2 mM Ca 2+ (Fig. lb). The peak of the rise 
in [Ca2+]i on Ca 2+ addition was 549 + 96 nM in the presence 
of WT compared with 1079+ 135 nM in controls 
(0.01 > P >  0.001, n = 8). At a lower concentration of WT 
(100 nM), there was no effect on Ca 2+ entry after addition 
of external Ca 2+ (Fig. lc). After the addition of Ca 2+ the peak 
[Ca2+]i rise was 1110+281 nM in the presence of WT com- 
pared with 1286+216 nM in controls ( 0 . 5 > P > 0 . 1 ,  n=7).  
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Fig. 1. The effect of  WT on the [Ca2+]i elevation evoked by thapsi- 
gargin. Fluorescence recordings from fura-2-1oaded human platelets 
incubated, for 10 min at 37°C, with either 2 ~tM WT (b), 100 nM 
WT (c), or the vehicle, DMSO (a), in the presence of  0.5 mM 
EGTA. 250 nM thapsigargin (TG) was added as indicated, followed 
by the subsequent addition of  2 mM Ca 2+ to assess Ca 2+ entry. 

These data demonstrate that WT at high concentrations at- 
tenuates store-depletion evoked calcium entry while having no 
affect on the thapsigargin-evoked mobilisation of Ca 2+ from 
internal stores. 

Next we examined the effect of WT on store-depletion 
evoked tyrosine phosphorylation in platelets. Samples were 
taken during the time course of the fluorescence experiments 
and protein tyrosine phosphorylation determined. Typical re- 
sults are shown in Fig. 2. A 10 min incubation with 2 ~M WT 
decreased protein tyrosine phosphorylation evoked by store 
depletion with inhibition most evident at specific bands of 
approximately 57, 69 and 130 kDa. Wortmannin, at this con- 
centration, also suppresses thrombin-evoked protein tyrosine 
phosphorylation (data not shown). Incubation with the lower 
concentration of WT (100 nM) did not affect the phosphotyr- 
osine levels. These effects are quantified in Fig. 3, which shows 
mean integrated absorbencies of the entire lane from the pro- 
tein phosphotyrosine analysis of three experiments. Results 
are expressed as a percentage of the integrated optical density 
of platelets before stimulation. Hence, at high concentrations, 
WT almost completely suppressed the rise in tyrosine phos- 
phorylation evoked by depletion of the intracellular calcium 
stores. Therefore at micromolar concentrations, WT is a po- 
tent tyrosine kinase inhibitor and greatly reduces store deple- 
tion-evoked protein tyrosine phosphorylation. Wortmannin 
has also been reported to inhibit tyrosine phosphorylation 
in human neutrophils [16]. 

Similar effects of high concentrations of WT on thapsigar- 
gin-evoked Ca z+ entry in human platelets have been reported 
previously [14]. This inhibition was suggested to result from a 
specific inhibition of myosin-light chain kinase which was 
therefore proposed to play a role in Ca 2+ entry [14]. Our 
results show that WT leads to inhibition of protein tyrosine 
phosphorylation within the cell an effect which reduces store- 
mediated Ca 2+ influx [5-11]. 
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Fig. 2. The effect of  WT on store-depletion-evoked protein tyrosine 
phosphorylation. 200 ].tM aliquots were taken from a stirred fura-2- 
loaded platelet suspension at 20 s prior to (a), and 10 s (b) and 
105 s (c) after, the addition of  250 nM thapsigargin with 50 nM io- 
nomycin. Platelet suspensions were pre-incubated for 10 min at 
37°C with either 2 taM WT (right hand lanes) or control, DMSO 
(left hand lanes). Proteins were analysed by 8% SDS-PAGE and 
subsequent Western blotting with a specific antiphosphotyrosine 
antibody. 
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Fig. 3. Densitometric measurements of the phosphotyrosine analysis, 
Three experiments were performed as described for Fig. 2 on plate- 
lets from three different donors and the presence of phosphotyrosine 
residues quantified by densitometry. The data represent the inte- 
grated optical density (mean+ SEM) for the entire lane 105 s after 
the thapsigargin and ionomycin addition. 

In human neutrophils, WT attenuates N-formyl-Met-Leu- 
Phe (fMLP) receptor-mediated phospholipase-D activation, 
without directly affecting the phospholipase activity [17]. 
This was later found to correlate with an inhibition of phos- 
phoinositide 3-kinase (PI 3-kinase) upstream of the phospho- 
lipase [18]. At concentrations of i00 nM or less WT has been 
shown to specifically and directly block PI 3-kinase [19]. At 
this concentration WT had no affect on store-mediated cal- 
cium influx or protein tyrosine phosphorylation. Conse- 
quently, the observed effects at high concentrations is unlikely 
to be due to a specific inhibition of PI 3-kinase. In a recent 
report in Swiss 3T3 cells, WT was demonstrated to be a po- 
tent inhibitor of phospholipase A2, as well as PI 3-kinase, at 
nM concentrations [20]. However, inhibition of phospholipase 
A 2 cannot explain observations reported here as aspirinated 
platelets were used. 

4. Conclusions 

In summary, we have demonstrated that WT at micromolar 
concentrations effectively suppresses store-depletion evoked 
calcium influx while having no affect on the thapsigargin- 
evoked mobilisation of Ca 2+ from internal stores. At the 
same concentrations WT also reduced store-depletion-evoked 
protein tyrosine phosphorylation. Concentrations in the range 

at which wortmannin inhibits PI-3 kinase were without these 
effects. Hence, at micromolar concentrations, WT acts as a 
non-specific tyrosine kinase inhibitor. These findings are com- 
patible with a role for the involvement of a tyrosine phos- 
phorylation step in the link between depletion of Ca 2+ stores 
and Ca 2+ entry in human platelets. 
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