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enterotoxin 

Abstract One of the two cysteines in the B subunit of heat- 
labile enterotoxin has been changed to a serine by site-directed 
mutagenesis so that the internal disulfide bond cannot form. The 
mutant protein, like the wild-type protein synthesised in the 
presence of the reducing agent dithiothreitol, does not form 
pentamers in the periplasm but binds to available membranes. 
Binding to membranes is disrupted by chaotropic agents but not 
by salt. More than half the molecules of mutant protein form 
disulfide-bonded dimers when exported to the periplasm but no 
dimer is detected when the protein is exported to the medium by 
spheroplasts. 
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I. Introduction 

Heat-labile enterotoxin of  E. coli is a periplasmic protein 
consisting of  a single A subunit  (26.5 kDa) inserted into a ring 
of  five B subunits (12 kDa) [1,2]. Each monomer  in the pen- 
tamer of  B subunits contain an internal disulfide bond  linking 
the cysteines at posit ions 9 and 86 [2]. When millimolar con- 
centrat ions of  the reducing agent, dithiothreitol (DTT), are 
added to the culture, newly synthesised B subunits are ex- 
por ted f rom the cytoplasm but pentamers  do not  form, 
a l though pentamers  already made do not  dissociate [3]. 
More  surprising to us was our  recent finding that  the reduced 
monomers ,  which are hydrophil ic after removal o f  the leader 
sequence, associate tightly with the membranes  enclosing the 
periplasm, from which they can only be removed by washing 
with chaotropic  agents [4]. 

To ensure that  these findings were due to lack of  the inter- 
nal disulfide bond  and not  some non-specific effects o f  the 
reducing agent, we used site-specific mutagenesis to change 
the cysteine at posit ion 9 to a serine. The mutan t  protein 

was exported,  did not  form pentamers  and was bound  to 
membranes .  Unexpectedly it rapidly formed disulfide bonded  
dimers with such high efficiency that  more  than hal f  the B 
subunit  was in this form. The dimers, like reduced wild-type 
monomers ,  were membrane-bound .  
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2. Materials and methods 

2.1. Bacteria 
E eoli K12 G6 (his-) containing pDQ5 was used in all experiments. 

pDQ5 is 5.7 kbp and contains the mutated gene for the B subunit of 
heat-labile enterotoxin (etxB) under the tac promoter, the neo gene, 
the laclq gene and the pBR322 origin of replication. Production of B 
subunit is very tightly regulated. Site-directed mutagenesis of wild- 
type B subunit was carried out using standard kits and following 
the manufacturer's instructions. After mutagenesis of the TGT cys- 
teine codon to the TCT serine codon the entire gene was sequenced 
and found to be otherwise identical to the published sequence [5]. 

2.2. Growth and labelling of cultures 
Bacteria were grown in glucose M9 medium with vitamin B1, his- 

tidine and kanamycin, at 37°C with shaking. Growth was monitored 
spectrophotometrically. When the A 56° reached approximately 0.4, 
IPTG (final concentration 1 mM) was added to induce expression 
of the B subunit. After 10 min [35S]methionine (5 ~Ci/ml, 1000 Ci.m- 
mol) was added and after a short period a high concentration of non- 
radioactive methionine (50 lag/ml) was added as a chase. Samples were 
taken either directly into 10% trichloracetic acid, or if bacteria were to 
be fractionated, into tubes containing an equal volume of crushed 
frozen 0.6 M sucrose for rapid cooling. 

2.3. Fractionation of bacteria 
Labelled bacteria were centrifuged at 4°C in a microfuge. The bac- 

terial pellet from 1 ml or 0.5 ml of culture was resuspended in 100 ~tl 
of 0.1 M Tris-C1 pH 7.6, 12.5 mM EDTA, 0.3 M sucrose. 10 ].tg of 
lysozyme were added and the bacteria were incubated for 20 min on 
ice. The spheroplasts were spun down at 4 ° for 2 min in a microfuge, 
and the supernatant (periplasm) was removed. The spheroplast pellet 
was resuspended in 100 ~tl of 0.1 M Tris-C1 pH 7.6, 5 mM Mg(Ac)2 
containing 10 Ixg/ml DNAse and subjected to 5 cycles of freezing and 
thawing after which the lysed spheroplasts were centrifuged at 4°C for 
45 min in a microfuge. The supernatant (cytoplasm) was removed and 
the membrane pellet was resuspended in 100 lal of 0.1 M Tris-C1 pH 
7.6, 5 mM Mg (Ac)2. 

2.4. Labelling of spheroplasts 
Cultures were divided into two, and one portion was induced with 

IPTG. After 10 min periplasms were prepared from unlabelled cells 
and the spheroplasts were resuspended in prewarmed growth medium 
containing IPTG if the spheroplasts were from the induced culture, 
and 0.3 M sucrose, to give the same concentration of cells as in the 
original culture. After 5 min at 37°C, radioactive methionine was 
added followed after 2 min by a chase of non-radioactive methionine. 
After a further 5 min incubation the labelled spheroplasts were cen- 
trifuged at 4°C for 45 min (to ensure that the membranes of lysed 
spheroplasts were pelleted) in a microfuge. The supernatant contain- 
ing soluble secreted proteins as well as soluble proteins from lysed 
spheroplasts, and the pellet containing intact spheroplasts as well as 
membranes from lysed spheroplasts were analysed. More lysis tended 
to occur for spheroplasts from induced than from uninduced bacteria 
during this procedure (see Fig. 3). 

2.5. Washing of spheroplasts from labelled cells 
Spheroplasts from a frozen pellet were resuspended in 10 mM Tris 

pH 7.6, 5 mM Mg(Ac)2, 0.5 M sucrose. To one volume of this sus- 
pension, one volume of 4 M NaC1 or 4 M guanidinium chloride was 
added. The mixture was incubated in ice for 5 min and then centri- 
fuged at 4°C for 45 min in a microfuge to ensure that membranes 
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from lysed spheroplasts as well as intact spheroplast would be pel- 
leted. Supernatants and pellets were analysed separately. 

2.6. Analysis of fractions 
Fractions were precipitated in 10% TCA and centrifuged at room 

temperature for 15 min in a microfuge. The supernatant was dis- 
carded, the pellet was washed with acetone. The final pellet was redis- 
solved in sample buffer for SDS-PAGE. This was carried out using 
the BioRad Mini Protean II system. The proteins were visualised by 
autoradiography. Radioactivity in individual bands was estimated 
using a Molecular Dynamic PSF Phosphorimager. 

3. Results 

We have previously found that when the formation of  the 
internal disulfide bond in the B subunit of  heat-labile enter- 
otoxin is prevented by the presence of  dithiothreitol (DTT) in 
the medium, the protein is exported through the cytoplasmic 
membrane,  but binds to the available membranes in the peri- 
plasm, instead of  remaining soluble and assembling into a 
pentamer [4]. This conclusion was based on experiments in 
which B subunit synthesised in the presence of  D T T  sedimen- 
ted quantitatively with membranes,  floated quantitatively with 
membranes,  and was distributed across both the cytoplasmic 
and outer membrane peaks after equilibrium sucrose density 
gradient centrifugation. Fur thermore  B subunit remained 
monomeric.  There was no detectable formation of  B subunit 
pentamer in the presence of  DTT,  even though pentamer al- 
ready assembled in the absence of  D T T  was not  affected by 
the reducing agent. 

To ensure that these findings were caused by the inability to 
form the internal disulfide bond between the cysteines at posi- 
tions 9 and 86, rather than by some less specific effect of  D T T  
we used site-directed mutagenesis to change the cysteine at 
position 9 in the B subunit to a serine. When this mutant  
protein was induced and labelled with [35S]Met in the absence 
of  D T T  a new prominent  radioactive protein of  apparent 
molecular weight approximately 28,000 was observed among 
the total labelled proteins of  the bacteria analysed by SDS- 
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Fig. 1. Mutated B subunits form dimers. Samples of uninduced and 
induced cultures of G6pDQ5 that were pulsed for 15 s and chased 
for 5 min, are shown. The two left hand lanes had no DTT in the 
sample buffer. The two right hand lanes are the same samples but 
with 25 mM DTT in the sample buffer. Positions of monomer and 
dimer B subunit are indicated. 
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Fig. 2. Mutated B subunits fractionate with membranes. Cells la- 
belled as in Fig. 1 were fractionated. T=total;  P=periplasm; 
S = spheroplasts; C = cytoplasm; M = membrane. 

P A G E  (Fig. 1) provided that there was no reducing agent in 
the sample buffer. If  there was either D T T  in the sample 
buffer (Fig. 1), or the bacteria were labelled in the presence 
of  2.5 m M  D T T  (not shown), the new band was not observed 
and there was a concomitant  and quantitatively equivalent 
increase in the radioactivity found at the position of  the 
monomer  B subunit (Fig. 1). Al though it is formally possible 
that the new band is a specific disulfide-bonded complex be- 
tween B subunit and another  small protein lacking significant 
quantities of  methionine, it is very much more likely that the 
new band is a dimer formed through a disulfide bond between 
the cysteines at position 86 in two molecules of  monomer.  On 
maximal induction about  7% of the radioactive methionine 
incorporated into proteins is found in the B subunit, of  which 
more than half  is in the putative dimer. No  such dimer is 
detectable when the protein is the wild-type form that con- 
tains both cysteines (not shown). 

Cell fractionation studies show that the mutant  B subunit, 
both in its monomer  and dimer forms is associated with the 
membranes of  the bacteria. It is almost undetectable in the 
periplasm, and after lysis of  spheroplasts sediments quantita- 
tively with membranes (Fig. 2). Other experiments have 
shown that it floats quantitatively with the membranes in 
metrizamide gradients and that it is distributed on both the 
cytoplasmic and outer membranes in sucrose density gradients 
(not shown). In all these respects the dimer and monomer  
form of  the mutated B subunit behave like the wild-type B 
subunit made in the presence of  DTT.  The binding to mem- 
branes is probably a consequence of  the inability of  the mu- 
tant protein to form pentamers in the periplasm, since other 
mutants of  the B subunit which are unable to form pentamers 
are known to associate with membranes [6]. The formation of  
the internal disulfide bond in each monomer  is therefore es- 
sential for pentamerisation and the consequent correct locali- 
sation of  the toxin. 

Format ion  of  the B subunit dimer is dependent on proxi- 
mity with membranes since when the mutant  B subunit is 
made by spheroplasts where the outer membrane is not  a 
barrier to escape into the medium, the protein remains as a 
monomer,  present in the medium after the spheroplasts have 
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been removed by sedimentation (Fig. 3). However,  the disul- 
fide bond is probably not formed between monomers  bound 
to the membrane but in the periplasm immediately after ex- 
port  of  B subunit since conversion of  monomers  to dimers 
occurs much more slowly when monomers  are first allowed 
to bind to membranes.  The normal  time course of  formation 
of  dimers is shown in Fig. 4. Dimer  formation is essentially 
complete within 2 min of  the labelling period, more than half  
the radioactivity in the B subunit being converted to the dimer 
in this time. In contrast, if  the cells are labelled in the presence 
of  D T T  so that all the radioactive B subunit remains mono-  
meric and binds to membranes,  and then the reducing agent is 
removed, there is a very slow conversion of  monomer  to di- 
mer such that only about  one-fifth of  the B subunits become 
dimers in 20 min (not shown). Meanwhile B subunits made 
after the removal of  D T T  rapidly and efficiently form dimers. 
In reverse experiments, dimers are only slowly converted to 
monomers  if D T T  is added after dimers are associated with 
membranes (not shown). It is clear therefore that once the 
protein is associated with membranes,  formation or  breakage 
of  the disulfide bond between monomers  is less readily accom- 
plished than immediately after synthesis and export  of  the 
protein. 

Association of  the B subunit dimer with membranes may be 
disrupted by 2 M guanidinium chloride but not  by 2 M so- 
dium chloride, indicating a contribution of  hydrophobic  and/ 
or hydrogen bonds to the binding (not shown). 

4. Discussion 

It is now clear that the inability of  wild-type B subunit of  
heat-labile enterotoxin to form pentamers in the presence of  
D T T  and its consequent binding to membranes are the direct 
effects of  the reduction of  the internal disulfide bond in the 
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Fig. 3. B subunits secreted from spheroplasts do not dimerise or as- 
sociate with membranes. Spheroplasts from induced and uninduced 
bacteria were labelled as described. The labelled spheroplasts were 
separated from labelled secreted proteins by centrifugation. The 
three lanes on the left show the labelled proteins from uninduced 
spheroplasts, the three on the right those from induced spheroplasts. 
T = total labelling pattern; P = pellet (retained proteins); S = superna- 
tant (secreted proteins). 
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Fig. 4. Time course of formation of dimers. Cultures of G6pDQ5 
were induced and after 10 min pulsed for 10 s (triangles) or 15 s 
(squares, circles). At various times during the chase, samples were 
pipetted directly into TCA (triangles, circles) or onto crushed frozen 
0.6 M sucrose (squares). The radioactivity in the dimer as a percen- 
tage of the total radioactivity in proteins is shown as a function of 
the time elapsed since addition of chase. The percentage of the 
radioactivity in the equivalent section of adjacent lanes displaying 
the radioactive proteins from identically labelled uninduced cells 
have been subtracted from the unadjusted percentages to give the 
plotted values. 

monomer,  rather than some secondary effect of  the reducing 
agent. These results were expected. However,  an unexpected 
finding was that in the absence of  D T T  the mutant  protein 
with a cysteine to serine substitution at position 9 should with 
such high efficiency and specificity form a disulfide bonded 
dimer between the cysteines at position 86 in each of  the 
two monomers.  

In the correctly folded B subunit monomer  C86 is in a 13- 
sheet containing [3-strands 1-5-6 of  one subunit and 2-3-4 of  
the neighboring B subunit in the pentamer [2]. C86 in [3-strand 
5 forms a bond with C9 that anchors a small amino-terminal 
a-helix on to the [3-sheet. In the mutant  form the bond is 
missing and, assuming that the secondary structure elements 
of  the monomer  can form, the c~-helix will be free to move out 
of  the way thus exposing the sulfhydryl group and making it 
available for formation of  a disulfide bond with a similarly 
exposed group on another monomer.  The efficiency with 
which the bond forms is striking and may indicate that non- 
covalent dimer formation is the first step in pentamer forma- 
tion by the wild-type protein. However  if such a dimer had a 
structure similar to that of  a neighboring pair of  B monomers  
in the assembled pentamer, there would be far too great a 
distance between the two cysteines for a disulfide bond to 
form. Disulfide bond formation in the mutant  dimer therefore 
would require that the 131-[35-[36 strands not  involved in the 6- 
stranded [3-sheet stabilising the dimer, should fold back over 
the sheet to bring the two 13~ strands close enough together for 
bond formation. 

The B subunit of  heat-labile enterotoxin is a highly charged 
monomer  and yet forms a tight association with membranes if 
unable to assemble into pentamers [4,6]. The association oc- 
curs whether the B subunit is a wild-type monomer  prevented 
from forming its internal disulfide bond, or a mutant  mono-  
mer or  dimer. This may be due to the interaction of  the 
hydrophobic side of  the long, highly amphipathic a helix, 
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spanning residues 59-78, with membrane lipids. It is unlikely 
to be predominently due to an electrostatic interaction with 
the periplasmic surface of the membranes because 2 M salt 
does not  affect the association. Because at very early times 
after labelling we observe small quantities of radioactive B 
subunit  in periplasmic preparations, and essentially none at 
later times, our model for the binding to membranes is that 
newly exported B subunit  is initially free in the periplasm but 
soon collides with one or other of the enclosing membranes in 
an orientation that promotes binding. This model also ex- 
plains why both monomer  and dimer forms of mutant  B sub- 
unit are found to be distributed over both cytoplasmic and 
outer membranes and why when made by spheroplasts the 
protein remains largely soluble. We suggest that dimerisation 
occurs before binding to membranes since when we allow 
radioactive monomers  made in the presence of DTT to bind 
to membranes and then remove the DTT,  formation of dimers 
is very much slower than formation of dimers from monomers 
synthesised after the removal of DTT. This is probably be- 
cause DsbA, the enzyme implicated in forming disulfide bonds 
in heat-labile enterotoxin and cholera toxin is a soluble peri- 
plasmic enzyme [7,8] and does not  interact as readily with 
proteins that are associated with membranes as with proteins 
of the periplasm. A lack of DsbA in spheroplasts from which 
the periplasm has been removed, together with the large re- 

duction in concentration of monomers  brought about  by ex- 
port  directly into the medium rather than into the enclosed 
volume of the periplasm, would also explain why we saw no 
dimer formation in B subunit  synthesised and exported by 
spheroplasts. 
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