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Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite
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Abstract Peroxynitrite (ONQO™) has recently been implicated
in connective tissue destruction in vivo. We have studied the
effect of ONOO™ on the activity of tissue inhibitor of
metalloproteinase-1 (TIMP-1) in vitro. The inactivation of
TIMP-1 by ONOO™ was dose dependent with 50 pM ONOO™
reducing the inhibitory activity of TIMP-1 towards gelatinase-A
by 50%. High concentrations of ONOO™ (500 uM-5 mM)
caused protein fragmentation whilst lower concentrations (< 250
uM) inactivated TIMP-1 without altering the molecular weight.
Inactivation could be blocked by ONOO™ scavengers but not by
hydroxyl radical scavengers. Our results show that ONOO™ is
capable of inactivating TIMP-1, a process which could
potentiate metalloproteinase-mediated tissue breakdown.
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1. Introduction

Oxidative stress has been implicated in many disease pro-
cesses including inflammation, reperfusion injury, aging and
cancer. In inflammation and ischaemic reperfusion significant
amounts of superoxide (O}") and nitric oxide (NO") are pro-
duced [1,2]. Peroxynitrite (ONOO™) is formed rapidly by the
interaction between NO° and O with a rate constant of
6.7x10° M~!-s7! in aqueous solution at pH 7.4 [3]. Many
workers have demonstrated that ONOO™ is an extremely re-
active species which readily oxidises various biomolecules,
such as low density lipoprotein [4], DNA [5] and a-1-protei-
nase inhibitor [6]. In the latter case, the oxidation of o-1-
proteinase inhibitor causes inactivation of its proteinase inhi-
bitory capacity. ONOQO™ can react with the tyrosine residues
of proteins to form 3-nitrotyrosine [7] and this “marker” mo-
lecule has been detected at inflammatory sites as well as in
body fluids [8,9]. Therefore, it has been suggested that
ONOO™ may contribute to tissue damage.

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is a mem-
ber of the naturally-occurring inhibitors of tissue-damaging
matrix metalloproteinases [10]. It inhibits active metallopro-
teinases, such as stromelysins, collagenases and gelatinases, by
forming a tight one-to-one stoichiometric complex [11]. Thus,
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the balance between the activities of TIMPs and active metal-
loproteinases is probably a critical factor in the control of
connective tissue remodelling in both health and disease,
and a change of this balance in favour of active metallopro-
teinases may be an important determinant in the disease pro-
cess. Although the inactivation of TIMPs by either reactive
oxygen species or proteinases has not been demonstrated in
vivo, the potentiation of metalloproteinase activity through
inactivation of TIMP-1 by neutrophil elastase has been shown
in vitro [12]. In this study, we have demonstrated a mechan-
ism by which oxidative stress might potentiate metalloprotei-
nase activity by TIMPs inactivation. We report that ONOO™
is capable of inactivating TIMP-1 effectively.

2. Materials and methods

2.1. Human TIMP-1, gelatinase-A and stromelysin-1

Human recombinant TIMP-1 was expressed and purified from
C127 cells [13,14]. Human recombinant progelatinase-A [15] and re-
combinant prostromelysin-1 [16] were generously donated by Dr. G.
Murphy, Strangeways Research Laboratories (Cambridge, UK). Pro-
gelatinase-A was activated by incubation with 2 mM (4-aminophe-
nyl)mercuric acetate (APMA) for 1 h at 25°C. Prostromelysin-1 was
activated by incubating with 2 mM APMA for 4 h at 37°C. The
conversion of proenzymes to active enzymes was confirmed by SDS-
PAGE and activity assays.

2.2. Determination of enzyme activity

Gelatinase-A was assayed using the synthetic peptide DNP-Pro-Leu-
Gly-Leu-Trp-Ala-p-Arg-NH2 as described by Stack and Gray [17].
The synthetic peptide (26 uM) was cleaved by gelatinase-A (25 nM)
in 50 mM Tris/100 mM NaCly/10 mM CaCly/0.05% Brij35 (pH 7.4).
The rate of change in fluorescence of tryptophan (excitation at 280 nm
with emission at 346 nm) was monitored for a period of 7 min at 37°C.

The activity of stromelysin-1 was measured using ['*Clacetylated
casein as substrate in 40 mM Tris-HCI (pH 7.6) with 12 mM CacCl,
as described by Cawston et al. [11]. Reaction mixtures were incubated
for 20 h at 37°C and incorporated 0.93 pug/ul stromelysin. One unit of
stromelysin activity produced 1 pg of casein fragments (soluble in 3%
(w/v) trichloroacetic acid) in 1 min at 37°C. The specific activity of
stromelysin after activation by APMA was 739 U/mg.

2.3. Determination of TIMP-1 activity

TIMP-1 activity was determined by measuring residual enzyme ac-
tivity after incubating enzymes with TIMP-1 for 30 min (gelatinase-A)
and 2 h (stromelysin-1) at 25°C.

2.4. Synthesis of ONOO~

ONOO™ was synthesised from 0.2 M NaNO; and 1 M H,0; in 0.5
M HCI [18] and stored in 1.5 M KOH at —70°C. Excess H20; in the
ONOO™ solution was removed by MnOg, and the H,O; concentra-
tion was determined by the horseradish peroxidase assay [19]. High
concentrations of ONOO™ (>200 mM) were obtained by freeze frac-
tionation [6]. The concentration of ONOO~ was determined by its
absorbance at 302 nm (£3p20m = 1670 M~ !-ecm™!) in 1.5 M NaOH.

2.5. TIMP-1 inactivation by ONOO™
TIMP-1 (final concentration of 5.5 uM) was incubated with
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ONOO™ (1 pM, 5 uM, 10 pM, 50 pM, 100 uM, 250 uM, 500 uM,
1 mM and 5 mM in 375 mM KOH) in 0.1 M phosphate buffer pH 7.0
(final volume of 100 pl) for 20 h at 20°C. The final pH of the reaction
mixture was 8.0. The effect of scavengers on the inactivation of
TIMP-1 by ONOO™~ was also examined. For this purpose, mannitol,
thiourea, benzoate, desferrioxamine, methionine, histidine, lysine, pro-
line, tyrosine and tryptophan were included in the reaction mixture.
The molar ratio of scavengers to TIMP-1 was fixed at 182:1.

2.6. Examination of TIMP-1 molecular form

SDS-PAGE was carried out in a Tris/glycine buffer system using
10-20% gradient gels. Samples were treated in SDS-containing sample
buffer with or without 2-mercaptoethanol, and bands were revealed
by silver staining. When a gel was used for Western blotting, proteins
were detected by Ponceau S (0.03% w/v) prior to incubating with anti-
TIMP-1 monoclonal antibody (1 pg/ml, Oncogen Science, MA) or
anti-nitrotyrosine monoclonal antibody (1 pg/ml, Upstate Biotechnol-
ogy Inc. NY).

3. Results

When human TIMP-1 (5.5 uM) was treated with ONOO™
(1 uM to 1 mM) for 20 h at 20°C, the inhibitory activities of
TIMP-1 towards both gelatinase-A and stromelysin-1 were
significantly decreased in a dose-dependent manner (Fig. 1).
The concentrations of ONOO™ causing 50% inactivation of
TIMP-1 were approximately 50 pM and 250 uM for gelati-
nase-A and stromelysin-1, respectively. The difference between
the dose-response curves generated by the two metallopro-
teinases was thought to be a result of differing assay meth-
odologies.

ONOO™ solutions may contain both nitrate and nitrite
contamination. In order to examine the effect of these con-
taminants on TIMP-1 activity, 0.8 mM decomposed ONOO™
was made by adding ONOO™ to 100 mM potassium phos-
phate (pH 7.4) at 37°C. There was no remaining ONOO™ in
solution as determined at 302 nm. When decomposed
ONOO™ was incubated with TIMP-1 under conditions iden-
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Fig. 1. Effect of peroxynitrite (ONOO™) on the ability TIMP-1 to
inhibit gelatinase-A and stromelysin-1 activities. TIMP-1 (5.5 uM)
was exposed to ONOO™ (1 uM, 5 uM, 10 pM, 50 pM, 100 uM,
250 uM, 500 uM and 1 mM in 375 mM KOH) in 100 mM phos-
phate buffer (final pH of solution was 8.0) for 20 h at 20°C. For
the measurement of gelatinase-A inhibitory activity, 2.5 pM
ONOO™ -treated TIMP-1 was reacted with 2.5 uM gelatinase-A for
30 min at 37°C (). For the measurement of stromelysin-1 inhibi-
tory activity, 2.5 uM ONOO™ -treated TIMP-1 was incubated with
0.15 uM stromelysin-1 for 2 h at 37°C (H). After incubating with
enzymes, the residual enzymic activities were assayed (see section 2).
The proteinase inhibitory activity of TIMP-1 samples incubated in
the absence of ONOO™ was taken as 100% activity.
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Fig. 2. Modification of the molecular form of TIMP-1 after treat-
ment with peroxynitrite (ONOO™). Samples from Fig. 1 experiments
were examined in parallel by 10-20% gradient SDS PAGE with
(A) silver staining, and (B) Western blotting with anti-TIMP-1
monoclonal antibody (1 pg/ml). Lane: 1, molecular weight markers
and molecular weight values (kDa) given to the left of gels. Lane 2,
TIMP-1 (5.5 uM) incubated in the absence of ONOO™. Lane 3 to
11, TIMP-1 (5.5 uM) incubated in the presence of decreasing con-
centration of ONOO™: lane 3, 5 mM; lane 4, | mM; lane 5, 500
uM; lane 6, 250 pM; lane 7, 100 uM; lane 8, 50 uM; lane 9, 10
uM; lane 10, 5 uM; and lane 11, 1 pM. Lane 12, 5.5 pM TIMP-1
incubated with 0.8 mM decomposed ONOO™.

tical to the above dose-response experiments (Fig. 1), it had
no effect on TIMP-1 as detected using both gelatinase-A and
stromelysin-1 assays.

The molecular forms of TIMP-1 after ONOO™ treatment
were also examined by SDS-PAGE with silver staining and
Western blotting with an anti-TIMP-1 monoclonal antibody
[20]. We used parallel TIMP-1 samples from the activity ex-
periments (for details see Fig. 1). The human recombinant
TIMP-1 used in this study is a 28 kDa protein with a trace
amount of dimer contamination (56 kDa) seen by both silver
staining and Western-blotting (Fig. 2, Lane 2). Both direct
protein detection (Fig. 2A) and antibody detection (Fig. 2B)
showed similar results. High concentrations of ONOO~
(5 mM and 1 mM) completely degraded TIMP-1 (both the
28 kDa protein and the 56 kDa dimer) to low molecular
weight fragments which were not detected by either silver
staining or anti-TIMP-1 antibody detection. However, using
500 uM ONOO™, TIMP-1 protein bands were seen by both
protein and antibody staining, but these bands were very
weak. The intensity of these TIMP-1 bands remained the
same as the concentration of added ONOO™ was progres-
sively lowered (250 uM down to 1 uM). Moreover, decom-
posed ONOO™ did not affect TIMP-1 (Fig. 2, Lane 12). No
evidence of further polymerisation of TIMP-1 was found by
either protein or antibody detection.

Comparing the results of the activity assays (Fig. 1) with
the SDS-PAGE results (Fig. 2), it appears that protein frag-
mentation is not directly responsible for TIMP-1 inactivation.
ONOO™ at a concentration of 250 uM reduced the inhibitory
activity of TIMP-1 by 80%. However most of this TIMP-1
was still detected by both protein and antibody detection
(Lane 6 in Fig. 2).

TIMP-1 (5.5 uM) inactivated by various doses of ONOO™
was also Western blotted and examined by an anti-nitrotyr-
osine monoclonal antibody [21] to detect nitrosylation of
TIMP-1 tyrosine residues by ONOO™. Only TIMP-1 samples
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exposed to 500 uM ONOO™ showed a single band at the
28 kDa position (data not shown). The doses tested which
were higher and lower than 500 pM did not produce nitrotyr-
osine formation that was detectable by this method. A possi-
ble explanation for these results is that high concentrations of
ONOO™ (1 and 5 mM) do cause the formation of nitrotyr-
osine within TIMP-1, but also degrade the protein to frag-
ments which are not detected on 10-20% SDS-PAGE. Lower
doses of ONOO™ (250 uM or lower) may generate small
amounts of nitrotyrosine which are not detectable by the cur-
rent staining method.

We studied the ability of various scavengers to block the
inactivation of TIMP-1 by ONOO™. Based on the results of
the dose-response study (Figs. 1 and 2), 500 uM ONOO™ was
chosen to use throughout the course of the scavenger study.
The legend of Fig. 3 summarises the details of this study. Fig.
3 demonstrates that thiourea, desferrioxamine, tyrosine and
tryptophan inhibited TIMP-1 inactivation induced by 500
UM ONOO™ to the extents of 94.2%, 91.1%, 91.8% and
75.3%, respectively. Methionine offered 50.9% protection
against ONOO™-mediated inactivation. However, mannitol,
benzoate, lysine, proline and histidine did not provide protec-
tion against TIMP-1 oxidation by ONOO™.

4. Discussion

The balance between the activity of proteinase inhibitors
and proteinases is thought to be a critical factor in extracel-
lular matrix turnover. TIMP-1 is often co-expressed with me-
talloproteinases from connective tissue cells [22,23]. Okada et
al demonstrated the proteolytic inactivation of TIMP-1 by
neutrophil elastase [12] and suggested that neutrophils, which
infiltrate inflammatory sites, may contribute to TIMP-1 inac-
tivation. The lack of inhibitory capacity of the natural inhi-
bitor of neutrophil elastase, o-l-proteinase inhibitor, at in-
flammatory sites has been described [24].

In the present study, we have demonstrated that ONOO™ is
able to inactivate TIMP-1. The oxidation of TIMP-1 was
evidenced by blocking with scavengers of reactive oxygen spe-
cies, such as desferrioxamine and thiourea, and direct detec-
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Fig. 3. The protective effect of a range of scavengers and amino
acids on TIMP-1 inactivation by peroxynitrite (ONOQO™). Each re-
action mixture containing TIMP-1 (5.5 uM), ONOO~ (500 uM),
and 1 mM scavenger/amino acid was incubated as detailed in Fig.
1. The TIMP-1 activity was determined by measuring residual gela-
tinase-A activity (except tryptophan experiments, in which stromely-
sin-1 was used). Values are presented as mean+S.D. calculated
from duplicate runs of three independent experiments (except tryp-
tophan where two independent experiments were performed). DFO
represents desferrioxamine.
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tion of 3-nitrotyrosine formation in the TIMP-1 protein. Con-
centrations of ONOO™ as low as 50 uM inactivated 50% of
the TIMP-1 as detected by gelatinase-A (Fig. 1) and concen-
trations over 500 pM readily degraded TIMP-1 protein to
fragments (Fig. 2). In agreement with our observation of
TIMP-1 fragmentation, recently Ischiropoulos and Al-Mehda
have shown that ONOO™ can cause partial fragmentation of
fatty acid-free bovine serum albumin [25].

Evidence for the generation of ONOQO™ in vivo has recently
been obtained by the detection of nitrotyrosine in inflamma-
tory sites [9,21] and body fluids [8]. It has been estimated that
a phagosome in an activated macrophage may generate
ONOO™ at a rate of approximately 500 pM/min [26]. On
the other hand, in response to inflammatory cytokines NO'
levels can be elevated by the induction of inducible nitric
oxide synthase [27]. Recently, it has been shown that NO’
can also be generated in ischaemic conditions by direct reduc-
tion of nitrite to NO* [2]. Thus, production of NO* together
with O} during inflammation and ischaemic reperfusion may
elevate the formation of ONOO™, and subsequent damage to
biomolecules such as TIMP-1 could occur under these patho-
logical conditions.

TIMP-1 inactivation by ONOO™ could be blocked by the
addition of thiourea, tyrosine, desferrioxamine, tryptophan
and methionine. It is known that thiourea, desferrioxamine,
and methionine are able to inhibit ONOO™-mediated oxida-
tion [1,6,28,29]. Proline, lysine and histidine were ineffective at
preventing TIMP-1 inactivation by ONOO™ despite the sus-
ceptibility of histidine to free radical attack [30]. Tyrosine,
tryptophan and methionine are known to react directly with
ONOO™ [7,25] and these amino acids blocked TIMP-1 inac-
tivation very effectively. We found that ONOO™-mediated
TIMP-1 oxidation was not blocked by the classic "OH scaven-
gers, mannitol and benzoate. Similar results with mannitol
and benzoate have been reported before [6,28]. Inactivation
of TIMP-1 could only be inhibited by agents which rapidly
react with ONOO™ ie tyrosine, tryptophan, methionine,
thiourea and desferrioxamine.

In conclusion, our results suggest that ONOO™ is capable
of inactivating TIMP-1, a possible mechanism which may
contribute to the regulation of connective tissue remodelling
in health and disease.
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