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Abstract The abnormal cytoskeletal organization observed in 
Alzheimer's disease has been suggested to arise from hyper- 
pbosphorylation of tau and the resultant elimination of its ability 
to associate with microtubules. This possibility has been sup- 
ported by a number of studies under cell-free conditions utilizing 
various kinases, phosphatases and their corresponding inhibitors 
each, and by treatment of intact cells with kinase and phosphatase 
activators and inhibitors. However, in studies utilizing intact cells, 
it remained difficult to attribute mierotubule compromise specifi- 
cally to tau hyperphosphorylation due to potential influence of 
inhibitors on tubuliu and/or other microtubule-associated pro- 
teins, which themselves possess assembly-regulatory phosphor- 
ylation sites. To address this difficulty, we subjected SH-SY-SY 
human neuroblastoma cells to treatment with the phosphatase 
inhibitor okadaic acid (OA), which has been previously demon- 
strated to depolymerize microtubules in these cells. OA induced 
an increase in tau hyperphosphorylation as evidenced by an in- 
crease in Alz-50 immunoreactivity and a corresponding decrease 
in Tau-1 immunoreactivity. When tau-enriched fractions from 
OA-treated cells were incubated under microtubule assembly- 
promoting conditions with twice-cycled, tau-free preparations of 
bovine brain tubulin not exposed to OA, Alz-50-immuuoreactive 
tau isoforms displayed a marked (49%) reduction in ability to 
co-assemble with bovine micrutubules as compared with Tau-1- 
and 5E2-immunoreactive isoforms. These data indicate that hy- 
perphosphorylated tau has a reduced capacity to associate with 
microtubules, and support the hypothesis that tau hyper- 
phosphorylation may underlie microtubule breakdown in Alz- 
beimer's disease. 
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1. Introduction 

Essential to the development of any treatment to halt or slow 
the widespread degeneration of  neurons that accompanies Alz- 
heimer's disease (AD) is to determine the progression of events, 
and in particular, the earliest such detectable events, that high- 
light 'at-risk' neurons in this disorder. A major pathological 
feature of  affected neurons in AD is the presence of neurofibril- 
lary tangles that are comprised in large part of hyper- 
phosphorylated forms of the microtubule-associated protein 
tau (for review, see ref. [1]). 

Several converging lines of evidence point towards tau hav- 
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ing a pivotal role in AD neurofibrillary pathology. A marked 
increase in total tau content is observed in AD brains, and this 
increase is apparently due to the accumulation of abnormally 
phosphorylated forms [2]. Paired helical filaments (PHF) that 
accumulate in affected neurons in Alzheimer's disease are com- 
prised of hyperphosphorylated tau that exhibits electrophoretic 
and antigenic properties distinct from that of normal adult 
CNS tau (for reviews, see refs. [3-5]). While most or all of these 
individual phosphorylation sites are also readily detectable dur- 
ing development and are detectable in rapidly-processed biopsy 
material from normal adult brain, these sites are apparently 
phosphorylated at a higher stochiometric ratio in AD brains 
(for review, see ref. [6]). PHF-tau exhibits a decreased MT 
binding ability [7], and dephosphorylation dissociates PHFs 
and restores MT-assembly promoting properties to tau [8-11]. 

It remains impossible, however, to confirm at present 
whether in AD tau is first hyperphosphorylated, which induces 
its dissociation from MTs, leading in turn to their collapse, or 
whether MT collapse represents an initiating phenomenon, and 
newly-dissociated tau subsequently becomes hyperphosphor- 
ylated. Consistent with the former possibility is that phosphor- 
ylation of tau at critical MT-binding site(s) prevents proper 
association of tau with MTs [12-20] and may therefore subject 
tau to AD-like hyperphosphorylation. That tubulin from AD 
brains remains assembly-competent is also consistent with the 
former possibility [8]. By contrast, however, the observation of 
rapid tau hyperphosphorylation following colchicine- induced 
MT collapse in the present and in a previous study [21] suggests 
that the latter possibility (i.e. initial MT collapse) could at least 
partially underlie tau hyperphosphorylation in AD. An addi- 
tional, plausible hypothesis for the development of these mor- 
phological aspects accompanying AD neuropathology is that 
both phenomena contribute to the full extent of tau hyper- 
phosphorylation and collapse of the MT system as follows: (1) 
some phosphorylation of tau at MT-binding sites, perhaps as 
a consequence of kinase hperactivation during ongoing cycles 
o f tau  association~tissociation with MTs, effectively withdraws 
tau molecules from the binding-competent tau pool; (2) a lim- 
ited degree of MT destabilization ensues, resulting in additional 
tau liberation; (3) this newly-dissociated tau is blocked by site- 
specific phosphorylation from further MT association; (4) addi- 
tional rounds of these phenomena lead to collapse of the MT 
system; (5) binding-incompetent tau would be subjected to pro- 
gressive AD-like hyperphosphorylation. In this regard, a recent 
examination of MT-promoting activities of tau from AD and 
control brains suggested that hyperphosphorylated, binding- 
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incompeten t  tau  may  fur ther  exacerbate  M T  b reakdown by 
scavenging no rma l  tau  [22]. 

A n u m b e r  of  kinases have been repor ted to induce normal  
tau  to exhibi t  PHF- l ike  characteris t ics  [23-37]. In addi t ion  to 
the potent ia l  involvement  of  al tered kinase activities in A D  
neuropathology,  prote in  phospha tase  activities are al tered in 
AD,  and  have been implicated in the accumula t ion  of  hyper- 
phosphory la ted  tau [38]. This possibility has been subs tan t ia ted  
by observa t ion  tha t  the phospha ta se  inhibi tor ,  okadaic  acid 
(OA) increases phosphory la t ion-dependen t ,  AD-l ike  tau im- 
munoreac t iv i ty  in cul tured neurons  and  neu rob la s toma  [39 
41], bra in  slices [42] and  bra in  in situ [43,44]. However,  OA 
t rea tmen t  may  induce M T  destabi l izat ion by several potent ia l  
mechanisms.  These may  include interference with dephos-  
phory la t ion  of  bo th  tubul in  and  tau, since bo th  the ability of  
~- tubul in  to assemble into MTs and  the ability of  tau  to pro- 
mote  M T  assembly and  stabilize MTs are inhibi ted by site- 
specific phosphory la t ion  [12-20]. Whe the r  or no t  OA-induced  
phosphory la t ion  events actually dissociate tau  f rom MTs, lead- 
ing to global M T  disassembly, or whether  tau can undergo 
assembly-restr ict ive OA- induced  phosphory la t ion  only follow- 
ing dissociat ion f rom MTs dur ing  normal  associa t ion-dissocia-  
t ion cycles is not  clear. T h a t  increased tau phosphory la t ion  
accompanies  colchicine- induced M T  disassembly as seen herein 
and  in a previous s tudy [18] is consis tent  with  the lat ter  possibil- 
ity. In the lat ter  case, con t inued  ' scavenging '  of  tau by OA- 
induced phosphory la t ion  may  eventual ly be expected to desta- 
bilize MTs to the po in t  of  collapse of  the M T  network.  More-  
over, the relative cont r ibu t ion ,  if any, of  OA-  induced tubul in  
hype rphosphory la t ion  to inhib i t ion  of  M T  assembly remains  
unclear. While  the present  analyses c a n n o t  differentiate a m o n g  
these possibilities, however,  the addi t ional  observat ion  of  lyso- 
somal  accumula t ion  fol lowing M T  destabi l izat ion by OA sup- 
por ts  the previous  hypothesis  [8,9,19], tha t  d is rupt ions  in the 
M T  system may represent  a critical early event leading to A D  
neuropa tho logy .  Moreover ,  OA- induced  interference with nor- 
mal  phosphory la t ion  of  o ther  M A P s  [39] and /or  o ther  cytoskel- 
etal prote in  such as neurof i laments  [45] could con t r ibu te  to M T  
destabi l izat ion,  since M A P - m e d i a t e d  interact ions between 
MTs and  neurof i laments  mediate  axonal  s tabi l izat ion [46]. 

In initial efforts to address  these issues, we examined  whether  
or not  OA- t r ea tmen t  of  h u m a n  neu rob la s toma  cells reduced 
the capaci ty of  var ious tau isoforms to associate with ex- 
ogenous,  non -OA- t r ea t ed  MTs. 

2. Materials and methods 

2.1. Cell eulture and treatment 
SH-SY-5Y cells (originally obtained from the stocks of Dr. June L. 

Biedler, Memorial Sloan-Kettering Cancer Center, Rye, New York) 
were cultured in Dulbecco's modified Eagle's medium containing 10% 
fetal calf serum (FCS) at 37°C in a humidified atmosphere containing 
10% CO 2 . Twenty-four hours later, the medium was replaced with 
medium containing 1/IM okadaic acid (OA) for 48 h. All reagents and 
chemicals were obtained from Sigma Chem. Co. (St. Louis, MO). 

2.2. Immunocytochemistry 
Treated cultures and untreated controls were rinsed in Tris-buffered 

saline (TBS; pH 7.4), fixed with 4% paraformaldehyde in 0.1 M phos- 
phate buffer for 15 min at room temperature, and rinsed 3x in TBS. 
Immunocytochemistry was carried out on fixed cultures using I : 100 
dilutions of monoclonal antibody Alz-50 (raised against a neurofibril- 
lary tangle preparation from AD brains [47,48] or monoclonal antibody 
Tau-1 (which reacts only with tau that has not been phosphorylated at 

a site that is hyperphosphorylated in AD; obtained from Boehringer- 
Mannheim, Indianapolis, IN) [49] followed by incubation with the 
appropriate peroxidase- (Sigma) or alkaline phosphatase-conjugated 
(Boehringer-Mannheim) secondary antibody and visualization by 
standard methodologies as described previously [50]. 

2.3. Enrichment of tau from SH-SY-5 Y lysates 
Cells were scraped from the plate and homogenized (50 strokes in a 

glass-Teflon homogenizer) in 1% Triton X-100 in 50 mM Tris-HC1 (pH 
7.4). Tau-enriched fractions were prepared as described [51]: The Tri- 
ton-soluble fraction was heated at 95°C for 15 min then the above 
centrifugation was repeated; the resulting supernatant, containing heat- 
stable, Triton-soluble proteins, contained virtually all of the tau as 
confirmed by immunoblot analyses (e.g. Fig. 2). 

2.4. Isohttion of bovine brain tubulin 
Bovine brain was homogenized in PEM buffer (100 mM PIPES (pH 

6.6) containing 1 mM EGTA and 1 mM MgC12) at 4°C and centrifuged 
at 40,000 x g for 30 min. GTP was added to the resulting supernatant 
at final concentration of 1 mM and the supernatant was incubated for 
30 min at 37°C to promote MT assembly, followed by centrifugation 
at 40,000 x g for 30 rain. The crude MT pellet was resuspended in PEM 
buffer at 4°C and this latter suspension and assembly procedure was 
repeated for a total of 3 cycles. The final pellet of purifed MTs was 
resuspended in 1/10 volume of PEM buffer and stored at -80°C. For 
dissociation of bovine MAPs from MTs, this preparation was made 0.7 
M NaC1 in PEM, and centrifuged, first at 40,000 x g at 4°C (to sedi- 
ment any denatured tubulin-containing aggregates) and the resulting 
supernatant at 40,000 x g for 30 min at 37°C; the MAP-free MT pellet 
was utilized for further analyses [52]. 

2.5. M T  assembly assays 
Bovine brain tubulin and heat-stable Triton-soluble fractions from 

untreated and OA-treated SH-SY-5Y cells were incubated separately 
and together in an excess of 0.1 M in PEM buffer for 30 min at 30°C 
in the presence of 10/.tM taxol (generous gift of Dr. M. Mercken, 
McLean Hospital, Belmont MA), then centrifuged at 100,000 x g for 
15 min at the respective temperature. 

2.6. Electrophoresis and immunoblot analyses 
Heat-stable Triton-soluble fractions (100/.tg of total protein) from 

OA-treated and untreated cells, bovine brain microtubules (10/zg of 
total protein), and supernatants and pellets obtained from sedimenta- 
tion analyses were electrophoresed on SDS 7% polyacrylamide gels and 
transferred to nitrocellulose using a Hoefer Transphor apparatus as 
described [50]. The proteins were visualized by sequential reaction of 
the replica in TBS overnight at room temperature with Tau-1, Alz-50, 
monoclonal antibody 5E2 (which reacts with tau regardless of phos- 
phorylation state; generous gift of Dr. K. Kosik, Brigham and 
Women's Hospital, Boston, MA) and with a monoclonal antibody 
directed against all forms of ~-tubulin (Sigma), followed by the appro- 

Control  OA 

Tau-I  

Alz-50 " 

Fig. 1. Okadaic acid increases hyperphosphorylated tau immunoreac- 
tivity in SH-SY-5Y neuroblastoma cells. Cells were treated with 1/.tM 
okadaic acid for 0 (Control) or 48 h (OA) then processed for immunocy- 
tochemistry with Tau-I or Alz-50. Note the marked diminution of 
Tau-I immunoreactivity and corresponding increase in Alz-50 im- 
munoreactivity following OA treatment. 
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Fig. 2. Distribution of tau during fractionation of SH-SY-5Y cells. Cells 
were homogenized in the presence of 1% Triton, the Triton-insoluble 
cytoskeleton (CS) was sedimented, and the resulting Triton-soluble 
material was heated at 56°C as described in section 2, then centrifuged 
to yield a (Triton-soluble) heat-labile (HL) pellet and a heat-stable (HS) 
supernatant. Immunoblot analysis revealed the quantitative recovery 
of both Tau-I and Alz-50 immunoreactive tau isoforms in the heat- 
stable supernatant fraction. This fraction was not assembly-competent 
in the absence of exogenous tubulin, since incubation of this fraction 
at 37°C in the presence of 10BM taxol but in the absence of exogenous 
tubulin followed by high speed centrifugation did not result in sedimen- 
tation (WP) of either Tau-1 or Alz-50 immunoreactive tau isoforms. 

priate alkaline phosphatase-conjugated secondary antibody and visual- 
ized as described [50]. Immunoblots were subjected to densitometric 
analysis as described previously [53]. 

3. Results 

As has been demonstrated in other neuronal and neuroblas- 
toma culture systems [394 1], treatment of SH-SY-5Y cells with 
OA markedly reduced Tau-1 immunoreactivity and increased 
Alz-50 immunoreactivity (Fig. 1). To enrich for tau, the Triton- 
soluble fraction from OA-treated cells was subjected to heating 
at 95°C followed by centrifugation to yield a supernatant con- 
taining heat-stable proteins [51]. Immunoblot analyses of frac- 
tions derived from OA-treated (Fig. 2) and untreated control 
cells (not shown) demonstrated, as has been shown for tau 
derived from brain [51] that both Tau-1- and Alz-50-im- 
munoreactive tau isoforms were quantitatively recovered 
within the heat-stable cytosolic fraction. 

To ascertain the ability of differentially-immunoreactive tau 
isoforms from OA-treated SH-SY-5Y cells to co-assemble with 
MTs, this fraction was incubated under MT-assembly-promot- 
ing conditions with and without tubulin purified from bovine 
brain by two assembly/disassembly cycles. The assembly-com- 
petence of this tubulin preparation was first demonstrated by 
sedimentation by high-speed centrifugation following incuba- 
tion for 30 min in MT assembly buffer at 30°C in the presence 
of taxol (Fig. 3; Table 1). Immunoblot analyses confirmed the 
absence of detectable 5E2, Tau-1, Alz-50 immunoreactivity 
within the bovine brain MT preparation prior to the addition 
of the tau-enriched SH-SY-5Y fraction (Fig. 3). 

When heat-stable Triton-soluble fractions from OA-treated 
cells were co-incubated with bovine brain tubulin in an excess 
of MT assembly buffer, significantly more Tau-1-immunoreac- 
tive tau was sedimented than Alz-50-immunoreactive tau (Fig. 
4; Table 1). As was observed with the MT preparation alone 
(Fig. 3), significantly more of each tau isoform was sedimented 
when cellular fractions were co-incubated with the MT prepa- 
ration at 30°C in the presence of taxol, however, Alz-50-im- 

munoreactive isotbrms demonstrated a markedly reduced abil- 
ity to co-assemble with exogenous MTs as compared to that of 
Tau-1- or 5E2-immunoreactive isoforms within the same cellu- 
lar fraction. By contrast, neither Tau-1- and Alz-50-im- 
munoreactive tau isoforms from OA-treated cells were capable 
of sedimenting when the heat-stable fraction from SH-SY-5Y 
cells was incubated in an equivalent amount of MT assembly 
buffer at 30°C in the presence of 10/2M taxol but in the absence 
of exogenous bovine brain tubulin (Fig. 2). Although the rela- 
tive amounts of Tau-1 and Alz-50-immunoreactive tau differed 
substantially between non-OA-treated and OA-treated cells 
(Fig. 1), Tau-1 and Alz-50-immunoreactive tau isoforms en- 
riched from non-OA-treated cells exhibited identical distribu- 
tion and MT assembly behavior as those presented herein for 
OA-treated cells (not shown). 

4. Discussion 

Compromise of the MT system has been suggested to repre- 
sent an antecedent event in the development of AD neuropa- 
thology which may underlie PHF formation [9,22] and, by 
disruption of MT-dependent membrane cycling, foster the ac- 
cumulation of lysosomal hydrolases that accompany the early 
stages of neurodegeneration in AD [54,55]. It remains impossi- 
ble to confirm at present whether in AD tau is first hyper- 
phosphorylated, which induces its dissociation from MTs, lead- 
ing in turn to their collapse, or whether MT collapse represents 
an initiating phenomenon, and newly-dissociated tau subse- 
quently becomes hyperphosphorylated. Accordingly, experi- 
mental alteration in kinase and phosphatase activities in neu- 
ronal cell culture systems represent a useful approach towards 
unraveling antecedent events. In previous studies, phosphatase 
inhibition by OA treatment has been shown to disrupt neuro- 
blastoma MTs [50,56] and increase hyperphosphorylated tau 
immunoreactivity in cultured neurons, neuroblastoma [39- 
41,57], brain slices [39] and brain in situ [40,41]. While tau that 
has been dissociated from MTs is susceptible to hyper- 
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Tau-1 5E2 
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Fig. 3. Assembly of bovine brain tubulin. Tubulin purified from bovine 
brain by two assembly/disassembly cycles was incubated for 30 min at 
4°C in the absence of taxol and at 30°C in the presence of 10,uM taxol, 
then subjected to high-speed centrifugation and separated from en- 
dogenous MAPs as described in section 2. Immunoblot analysis of 
resulting pellets and supernatants demonstrated MT assembly as evi- 
denced by sedimentation of tubulin immunoreactivity; see Table 1 for 
quantitation. Immunoblot analyses also confirmed the absence of de- 
tectable Alz-50, Tau-1 and 5E2 immunoreactivity within the bovine 
brain MT preparation prior to the addition of the tau-enriched SH-SY- 
5Y fraction. 
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Fig. 4. Alz-50-immunoreactive tau isoforms demonstrate a reduced 
ability to co-sediment with exogenous microtubules. Heat-stable Tri- 
ton-soluble fractions from OA-treated cells were co-incubated for 30 
min at 30 ° C in the presence of 10 ¢tM taxol with bovine brain tubulin 
in an excess of MT assembly buffer and subjected to high-speed centrif- 
ugation as described in section 2. Immunoblot analysis demonstrated 
that significantly more Tau-1- and 5E2-immunoreactive tau was sedi- 
mented than Alz-50-immunoreactive tau following incubation with as- 
sembling MTs. 

phosphorylation,  and such hyperphosphorylat ion will prevent 
its subsequent association with MTs [1,9,12,16], it remains un- 
clear in such studies whether OA treatment fosters MT desta- 
bilization by interference with phosphorylat ion/dephos- 
phorylation cycles o f tau ,  tubulin or  both, since both the ability 
of  ~-tubulin to assemble into MTs and the ability of  tau to 
promote  MT assembly and stabilize MTs are inhibited by site- 
specific phosphorylat ion [12 17]. Moreover,  OA-induced inter- 
ference with phosporylat ion/dephosphorylat ion cycles of  other 
MAPs  [39] and/or  other cytoskeletal protein such as neurofil- 
aments [45] could contribute to MT destabilization, since 
MAP-media ted  interactions between MTs and neurofilaments 
mediate axonal stabilization [46]. To address this issue, in the 
present study we moni tored the ability of  phosphorylation- 
dependent and nonphosphorylat ion-dependent  immunoreac-  
tive tau isoforms derived from OA-treated cells to co-assemble 
with exogenous (non-OA-treated) assembly-competent MTs. 

We observed in the present study that tau isoforms display- 

Table 1 
Alz-50-positive tau has a reduced ability to co-sediment with exogenous 
microtubules 

Antigen Sample Relative % Sedimented** 
density* 

~-Tubulin Supernatant 1 
Pellet 66 99% 

Tau- 1 Supernatant 109 
Pellet 87 44% 

Alz-50 Supernatant 31 
Pellet 9 23% 

5E2 Supernatant 85 
Pellet 42 49% 

*Calculated as the staining intensity obtained following densitometric 
analysis using NIH Image software as described in section 2 of the 
appropriate band minus background of adjacent areas of replicas of 
similar density; values presented represent the average obtained tbr two 
replicas from separate experiments for each antigen. 
**Calculated as the (average amount in the pellet/(average amount in 
the pellet + average amount in the supernatant) x 100 for each condi- 
tion. 

ing Alz-50 immunoreactivity, indicative of  an altered configura- 
tion generated by hyperphosphorylat ion,  exhibited a markedly 
reduced ability to associate with exogenous MTs than did 
isoforms displaying non-phosphorylated (Tau-1) or total (5E2) 
immunoreactivity.  Despite that there may be overlap between 
the populations of  tau molecules displaying the phospho-de- 
pendent ALZ-50 and Tau-1 epitopes, these antibodies appar- 
ently represent useful markers of  'hyperphosphorylated '  and 
'hypophosphorylated '  tau, since Alz-50-immunoreactive tau in- 
creased, and Tau- l - immunoreact ive  tau decreased, following 
inhibition of  phosphatase activity. While these results do not 
eliminate that possibility that the M T  system is comprised inde- 
pendently of  effects on tau, they confirm that alteration of  tau 
phosphorylat ion/dephosphorylat ion cycles within intact cells 
can render tau incompetent  to associate with MTs. The findings 
of  the present study are largely consistent with those of  a pre- 
vious examination of  the assembly-competence of  tau from 
untreated SH-SY-5Y cells [58]. In the present study, cells were 
treated with OA merely to increase the levels of  Alz-50-positive 
tau, which, al though present, is relatively low in SH-SY-5Y cels 
in our hands in the absence of  additional treatments; the (low 
levels of) Alz-50-positive tau and Tau-l-posi t ive tau exhibited 
the identical abilities to coassemble with exogenous MTs as did 
tau isoforms enriched from OA-treated cells. 

The findings of  the present study are consistent with previous 
hypotheses [9,22,58] that tau hyperphosphorylat ion contributes 
to the breakdown of MTs in AD.  
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