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M-caveolin, a muscle-specific caveolin-related protein 
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Abstract Caveolae, small invaginations of the plasma mem- 
brane, are a characteristic feature of many mammalian cells. The 
best-characterised caveolar protein is the integral membrane pro- 
tein, VIP21-caveolin. We now describe a novel homologue of 
VIP21-caveolin, M-caveolin, which is expressed exclusively in 
muscle. M-caveolin was shown to be expressed in differentiated 
myotubes but not myoblasts. Epitope-tagged M-caveolin ex- 
pressed in non-muscle cells was targetted to surface caveolae 
where it colocalized with endogenous VIP21-caveolin. M-caveo- 
lin may play a specialised role in the caveolae of muscle cells. 
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I. Introduction 

Caveolae are small invaginations of the plasma membrane 
which are a particularly abundant and characteristic feature of 
endothelial cells, smooth muscle cells, adipocytes, and fibro- 
blasts [1]. Their exact role in these different cell types is still 
unclear but proposed functions include signal transduction, 
transcytosis across endothelia, potocytosis, and endocytosis 
[2,3,4,5]. Caveolae were defined morphologically by early elec- 
tron microscopists as 60 80 nm diameter flask-shaped invagi- 
nations of the plasma membrane [6,7]. In contrast to clathrin- 
coated pits they show no clear cytoplasmic coat in conventional 
resin-embedded specimens. However, other techniques have 
revealed a striated coat on the cytoplasmic surface of the cave- 
olae [8,9]. The coat may consist at least partly of an integral 
membrane protein called VIP21-caveolin ([9,10] here termed 
V-caveolin). This protein, which was identified independently 
as a v-src kinase substrate [11] and as a component of the Trans 
Golgi Network (TGN) and TGN-derived vesicles in epithelial 
cells [12,13] is highly expressed in those tissues with abundant 
caveolae (smooth muscle, adipose tissue and lung; [14]) and 
appears to be a common constituent of caveolae. V-caveolin 
shows an unusual topology forming a hairpin loop in the mem- 
brane with both the N- and C-termini facing the cytoplasm [13]. 

The exact function of V-caveolin remains unclear but recent 
studies give some insights. V-caveolin monomers self-associate 
in the ER membrane shortly after synthesis to form oligomers 
[15]. At a later step in the biosynthetic pathway the oligomers 
become insoluble in non-ionic detergents. V-caveolin has also 
been shown to bind cholesterol with high affinity, the bound 
cholesterol even resisting removal by treatment with SDS [16]. 
These properties of V-caveolin may be important in the forma- 
tion of caveolae and the maintenance of caveolar morphology 
and function. Cholesterol appears to be essential for caveolar 
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function as shown by treatment of cells with cholesterol-bind- 
ing agents [17] and may be recruited by V-caveolin. In addition, 
treatment of cells with cholesterol oxidase causes redistribution 
of V-caveolin from the cell surface [18]. Our recent results 
demonstrate a direct role for V-caveolin in caveolae formation. 
Expression of V-caveolin in a lymphocyte cell line which lacks 
caveolae (as defined morphologically and by the lack of 
V-caveolin, [19]) causes de novo formation of plasma mem- 
brane invaginations which are indistinguishable from caveolae 
[20]. 

Two isoforms of V-caveolin of different size and charge have 
been identified by Western blotting of 2D gels [12]. Rather than 
being different gene products the shorter form appears to be 
the result of translation from an inner initiation site [21]. We 
now describe the characterisation of a novel homologue of 
V-caveolin which is muscle specific. In addition database 
searches reveal other caveolin-related sequences. Our results 
suggest that a number ofcaveolin-related proteins have evolved 
to play specialised roles in different tissues. 

2. Experimental 

2.1. Isolation of V-caveolin homologue probe from rat 
A forward primer RORfor 5' CGCGGATCCATGTCCCTGGAC- 

TCACCCCCAGGATTT 3' and a reverse primer RORrev 5' CCGG- 
AATTCTTAGCCTTCCCTTCGCAGCACCACCTT 3' were de- 
signed based on sequence comparisons between available caveolin se- 
quences and the 3' UTR of the rat oxytocin receptor. These primers 
were used to amplify a 450 bp product, RORI, from rat genomic DNA 
by PCR using the following cycling conditions, 94°C 1.0 min followed 
by 30 cycles of 94°C 15 s, 68°C 15 s, 72°C 15 s and 72°C 3 min. The 
resulting product was cloned into the BamHI and EcoRI sites of 
bluescript SK II using the restriction sites introduced by the primers 
during the PCR reaction. The sequence of three clones, each derived 
from an independent PCR reaction, were determined on both strands 
using the T7 and T3 primers. 

2.2. Northern analysis 
Multiple tissue northerns (MTN) were obtained from Clonetech, 

Palo Alto, CA. The rat MTN was probed with the 450 bp ROR1 
genomic insert that had been labeled with 32p using the Prime-It labeling 
kit (Stratagene, La Jolla, CA) as described previously [22]. Subse- 
quently, a mouse MTN was probed with the complete 1000 bp insert 
of M-caveolin using identical methods. 

2.3. Isolation of mouse M-caveolin cDNA 
A skeletal muscle cDNA library was constructed with the Great 

Lengths cDNA Synthesis Kit (Clonetech, Palo Alto, CA) using 5/2g of 
mouse skeletal muscle poly A+ RNA (Clonetech, Palo Alto, CA). The 
resulting cDNA was cloned into the EcoRI site of Lambda Zap II 
(Stratagene, La Jolla, CA) and packaged in vitro (Gigapack II Plus: 
Stratagene, La Jolla, CA). 

The 450 bp rat genomic insert, ROR1, was labeled with the DIG 
random prime kit (Boehringer Mannheim, Germany) and used to probe 
150,000 plaques of the mouse skeletal muscle library using standard 
hybridization conditions [22]. Hybridized filters were subsequently 
processed using the DIG system after overnight hybridization accord- 
ing to the manufacture's instructions (Boehringer Mannheim, Ger- 
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many). The initial screen yielded three positives, B, C and E, that 
re,~creened to homogenity. All clones were excised from Lambda Zap 
II into Bluescript in vivo according to the manufacturer's instructions 
(Stratagene, La Jolla, CA). 

Fhe complete sequences of all three clones on both strands were 
obtained using the T7 and T3 primers, two forward (420F TGCTAC- 
C( ICCTGTTGTCT and 770F TCCTCTCAATTCCACCTC) and two 
reverse (310R TCCGCAATCACGTCTTCA and 570R GCGAAGA- 
G~'GGGTTGCAG) internal primers. Assembly and analysis of the 
M-caveolin sequences was achieved using the DNASTAR software 
package (DNASTAR Inc, Madison, WI). Database sequence searches 
w~'re run using BLAST [23] and TBLASTN. 

2. , .  Differential Northern analysis 
Jndifferentated mouse muscle myoblast C2C12 cells were main- 

tanned at less than 50% confluence in DMEM supplemented with 10% 
fe' al calf serum. The C2C12 cells were induced to form myotubes by 
gr ~wing 100% confluent cells in complete DMEM medium supple- 
ran ted  with 2% Horse Serum [24]. The cells were fed everyday for up 
to 7 days and myotube formation assessed by visual inspection. Total 
R 'qA was isolated from equivalent amounts of undifferentated and 
differentiated cells using the total RNA isolation kit (Stratagene, La 
J ( la ,  CA) while Poly A+ RNA was selected using the Poly(A) quik 
m RNA isolation kit (Stratagene, La Jolla, CA). 1 mg of mRNA from 
m~differentiated and differentiated cells was separated on a 1% formal- 
d~ ayde agarose gel and processed as previously described [22]. The blot 
w s  subsequently probed with the complete M-caveolin cDNA. 

2. :. Expression of M-caveolin in HeLa cells 
M-caveolin was cloned into CB6KXHA, a derivative of the transfec- 

ti, n vector CB6 [25], which contains the HA tag, YPYDVPDYA imme- 
di,ttely downstream of an in-frame NotI site (Higley and Way, unpub- 
li,~ aed). Briefly, an in-frame NotI site was inserted at the C-terminus of 
M-caveolin by PCR using the reverse primer 5' GGGGCGGCGGC- 
O]CCGCCTTCCCTTCGCAGCACCAC 3' in conjunction with the 
T vector primer. The resulting product was cloned into the HindIII- 
A ,tI sites of CB6KXHA using a unique HindIII site at base pair 37 in 
tl- ~ 5' UTR of M-caveolin and the NotI site engineered by PCR. The 
se ]uence of the final construct CB6M-cavHA containing M-caveolin 
~ th an in-frame HA-tag at the C-terminus was confirmed by sequenc- 
i~ ; both strands. HeLa cells were grown until approximately 50% 

C C TATTTAGC CGGCAGCGGCAC CAGTC TGGAGACC CTAAGC TTC43TCTTTC TGC C CC C AG 60 
C~AC TATCAAC GATACCAGC CACAAGGC TCTGATCGCC TC C TGAAGGAGCCCC AGC CTCAC 120 

M M T E E H T D L E A R I I K D Z H C K 20 
AATGATGAC CGAAGAGCACAC C43ATC TGGAAC-CTCGGATCATCAAGGACATTCAC TGC AA 180 

E I D L V N R D P K N I 14 E D I V K V D 40 

GGAGATAGAC ~i'GGTGAACCGC GAC CC C AAGAACATCAATGAGGACATTGTGAAGG TAGA 240 
. . . . . . . . . . . . . . . . . .  R - 

F E D V I A E P E G T Y S F D G V W K V 60 

TTTTGAAGACGTGATTG C C~AGC C CGAC~GCACCTACAGCTTC GACGGTGTATGGAAGGT 300 
- y . . . . . . . . . . . . . . . . . .  

S F T T F T V S K Y W C Y R L L S T L L 80 

GAGCTTCACCACGTTCACCGTCTCCAAGTACTGGTGCTACCGCCTGTTGTCTACACTGCT 360 

G V P L A L L W G F L F A C I S F C H I i00 

GGGTGTTCCACTGGCCCTGCTCTGGC93ATTCCTGTTCGCCTGTATCTCCTTCTGCCACAT 420 

W A V V P C I K S Y L I E I Q C I S H I 120 

CTGGGCCGTGGTGCCCTGCATTAAGAGCTACCTGATCGAGATCCAGTGCATCAGCCACAT 480 

Y S L C I R T F C 14 P L F A A L G Q V C 140 

C TAC TCACTG TGTATC CGCAC C TTCTGCAAC CC GC TC TTCGCTGCGTTC-GC4~ CAGGTC TG 540 

14 I K V V L R R E G * 151 
CAG CAACATTAAGGTGGTGC TGCGAAGGGAAGGC TAAAC-C CAGGCTGGGCTGTGGGGAAG 600 

GC TGGGCAGCg~GGATCAAAGG TCAGGTGAGCATAC C TGGC TCTC-C TC CACATGC4~CTGCT 660 
GGAGAGC TC TTC C TTTTGAGGTTC CTC TCAATrDC CAC CTC AAGATGGGAAAACTTGGTGC 720 
GGGAGGAGC CAGAAGGAAAAGACAGC C CAGTGq~GAAACAC GGGCACC CC TGCTC CGCTC 780 
AGC C TCC CATGAAC C C CC-GCGC4~C CTGAC TGAGCGGAGGGTTCCTTAAGAGGCAGC TAGC 840 
GCAAGG CTTTC-CGTT CACATGTACTGTAATAGCCAGTCTTCTAGAGGTGTGACTC GTC TC 900 
CTCATGC TAC~3C~AGCAAGCAGTGACTGC CGC~CATTGAGGAAC~TGC T G C ~ T ~  960 
T T T T A A C T G T ~  i 0 0 0 

1- g. 1. Nucleotide and amino acid sequence of M-caveolin. The nucle- 
o ide sequence of mouse M-caveolin together with its deduced amino 
add sequence (bold). The polyadenylation signal at the 3' end of the 
DNA sequence is shown in bold. Identical amino acid residues of the 
rat ROR 1 probe are indicated by horizontal lines and the two conserved 
st~bstitutions are shown above. The sequence of M-caveolin has been 
d~posited in GenBank, accession number U36579. 
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Fig. 2. Tissue-specific expression of M-caveolin. Expression of mouse 
M-caveolin was examined by Northern blotting of mRNA from the 
indicated tissues. Overnight exposure shows a single abundant tran- 
script of approximately 1 kb in heart and skeletal muscle. A similar size 
but fainter band is also evident in lung. 

confluent. They were incubated with 1 fig of the M-caveolin-HA con- 
struct in serum-free medium for 1 h and then 4/11 of lipofectin reagent 
(Boehringer-Mannheim, Germany) was added. After a further 4 h the 
cells were washed and further incubated in serum-containing HeLa 
medium. Transfection experiments were analysed by immunofluores- 
cence between 15 and 36 h later. Cells were fixed with 3% pfa in PBS 
and permeabilised with 0.1% saponin. After quenching with 50 mM 
NH4C1 they were incubated in 0.1% BSA, 0.5% fish skin gelatin for 30 
min and then with the primary antibodies in PBS containing 0.05% 
saponin. V-caveolin was detected using antiserum or affinity purified 
antibodies against an N-terminal peptide [13] and HA-tagged M-cave- 
olin with a mouse monoclonal to the HA epitope (12CA5, Boehringer). 

For immunoelectron microscopic localisation of expressed M-caveo- 
lin, HeLa cells cultured in a 6 cm dish were transfected with HA-tagged 
M-caveolin as described above. After 36 h they were fixed with 3% 
paraformaldehyde in 100 mM phosphate buffer, pH 7.35, for 30 rain 
at room temperature and then scraped from the culture dish and pel- 
leted. Processing for frozen sections, sectioning, and immunolabelling 
were as described previously [13]. 

3. Results 

3. I. Isolation o f  a V-caveolin homologue 

Database  searches using the BLAST p rogramme revealed 
possible homology  to the V-caveolin gene in the non-coding  
s t rand  of  the 3' un t rans la ted  region of  the ra t  oxytocin receptor  
(ROR).  Primers cor responding  to the predicted 5' and  3' ends 
were used amplify a single 450 bp  b a n d  by PCR f rom rat  
genomic DNA.  The sequence of  a single clone f rom three inde- 
pendent  R O R  reactions was determined.  All three sequences 



110 M. Way, R.G. Parton/FEBS Letters 376 (1995) 108-112 

UN DIFF 

1.3 I~ 

Fig. 3. M-caveolin expression is induced upon muscle differentiation. 
mRNA from undifferentiated (UN) and differentiated (DIFF) C2C12 
cells probed with the M-caveolin cDNA reveals that the message is only 
expressed in myotubes. Lanes contain equal loadings. 

showed the predicted similarity to V-caveolin except that the 
frame shifts seen in the original rat genomic DNA were absent. 
Northern analysis with ROR 1 on a rat multiple tissue Northern 
detected a single band of ~ 1.0 kb in heart and skeletal muscle 
(data not shown). Subsequently, ROR1 was used to probe and 
isolate three independent clones from a mouse skeletal muscle 
cDNA library. The sequence of the three clones were found to 
be identical and encoded a protein of 151 amino acid residues 
with a predicted mass of 17.3 kDa (Fig. 1). We are confident 
that the position of translation is correct as multiple stops exist 
in the sequence immediately 5' to the initiator Met. The de- 
duced sequence of the mouse clone showed only two conserva- 
tive changes from the sequence of the three ROR clones derived 
from the rat genomic DNA (Fig. 1). 

3.2. V-caveolin homologue is muscle specific 
We examined the expression of the caveolin-like gene by 

Northern blotting of multiple mouse tissues. A single band of  
~ 1.0 kb was detected in skeletal muscle and heart (Fig. 2). A very 
faint band was also seen in lung. This may be derived from 
small amounts of smooth muscle tissue that would be expected 
to be present in the lung tissue. No band was detected in the 
other tissues tested even after longer exposure times. To further 
confirm the muscle specificity we probed Northern blots of 
undifferentated and differentiated mouse muscle myoblast 
C2C 12 cells. Even with long exposure times a - 1.0 kb could only 
be detected in cells that had been differentiated into myotubes 
(Fig. 3). Based on its muscle-specific expression, we have 
termed the V-caveolin homologue M-caveolin for muscle-spe- 
cific caveolin. 

3.3. Sequence comparison of  M- and V-caveolin 
The sequence of M-caveolin is 64.2% identical to V-caveolin 

(Fig. 4). Like V-caveolin, M-caveolin contains a 33 amino acid 
hydrophobic domain, residues 74-107, that is predicted to form 
a hairpin loop in the membrane with both the N- and C-termini 
facing the cytoplasm. The conservation of the length and se- 
quence of this domain suggests it plays an important role in 
caveolin targeting and/or function while the more variable 
C-terminus may confer muscle-specific functions. In addition, 
database searches with the M- and V-caveolin protein se- 
quences identify four human expressed sequence tags, 
y135d07.sl, ye79f05.rl, yd37h10.rl and yj31h07.sl, that contain 
homologous but not identical sequences, suggesting the exist- 
ence of a third caveolin-related protein. 

3.4. Expressed M-caveolin is associated with caveolae 
We examined whether M-caveolin contains targetting infor- 

mation for caveolar localisation by expressing an epitope- 
tagged M-caveolin in fibroblasts. HeLa cells were transfected 
with a construct containing M-caveolin with a C-terminal HA 
tag. The expressed protein, localized using antibodies to the HA 
tag, showed almost complete colocalisation with the en- 
dogenous V-caveolin, detected using antibodies to its N-termi- 
nus (Fig. 5). Cells treated identically but without addition of 
DNA showed no labelling with the HA antibody. We then 
examined the localisation of the tagged protein by immunoelec- 
tron microscopy on frozen sections. Specific labelling was 
found on plasma membrane-associated caveolae with no la- 
belling of the intervening plasma membrane (Fig. 6). M-caveo- 
lin, like V-caveolin, is therefore efficiently targetted to caveolae. 

4. Discussion 

In the present study we have characterised a novel caveolin- 
related protein, M-caveolin. In contrast to V-caveolin, M-cave- 
olin shows a very restricted distribution being expressed only 
in muscle. In addition, the expression of M-caveolin is ex- 
tremely tightly regulated only being expressed upon differentia- 
tion of myoblasts into myotubes. Database searches with the 
M- and V-caveolin sequences also suggest the existence of at 
least one additional caveolin homologue based on four overlap- 
ping expressed sequence tags. Taken together our findings 
show that M- and V-caveolin are members of an emerging 
family of caveolin-related molecules in mammalian cells. 

Comparison of the known V-caveolin sequences from differ- 
ent species and the sequence of M-caveolin allow us to distin- 
guish potentially important conserved motifs from more varia- 
ble regions which may have tissue-specific functions. The 
N-terminal cytoplasmic domain of M-caveolin is 27 amino 
acids shorter than that of V-caveolin. However, excluding the 

M-cav 

V-cav 

MMTEEHTDLEARIIKDIHCKEIDLVNRDPKNINEDIVKVDFEDVIAEPEGTYSFDGVWKV 60 
* * * * * *********** * * ** *******~**** **** ** 

MSGGKYvDSEGHLYTvPIREQGNIYKPNNKAMADEVTEKQ--vY-DAHTKEIDLVNRDPKHLNDDVVKIDFEDvIAEPEGTHSFDGIWKA 87 

M-cav 

V-cav 

SFTTFTVSKYWCYRLLSTLLGVPLALLWGFLFACI SFCHI'WAVVPC IKSYL I E I QC I SH IYS LC I RTFCNPLFAALGQVC SN IKVVLRREG 151 
******* *** ****** * * ** ** ** ** *********** ******** ** *** *** * * *** * 

S FTTFTVTKYWFYRLLaTIFGIPNALI'WGI%'FAILSFLKIWAVVI:~IKSFL I E IQC I SRVYS IYVHTFCDPLFEA I GK I F SNI R I STQKE I 178 

Fig. 4. Sequence alignment of caveolin family members. Sequence alignment of M-caveolin (M-cav, top) and VIP21-caveolin (V-cav, below). Asterisks 
indicate identical residues. The stretch of residues shown in bold correspond to the conserved 33 amino acid stretch postulated to form the 
intramembrane domain. In addition, the internal initiation site (Met 33) in V-caveolin is indicated. 
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Fi:. 5. Localisation of HA-tagged M-caveolin in transfected HeLa cells. HeLa cells were transfected with HA-tagged M-caveolin and then 
de able-labelled with antibodies against the HA-tag (A and C) and VIP21-N (B and D). Note the high degree of colocalisation between the tagged 
M.caveolin and V-caveolin (arrows). Bar = 1/am. 

fir ~t 15 amino acid residues of M-caveolin they are 84% identi- 
ca up to the putative intramembrane domain (Fig. 4). The 
internal initiation site for translation [21] and the conserved 
co asensus protein kinase C (PKC) phosphorylation site of V- 
ca ceolin [26] are lacking in M-caveolin. The first region where 
th,: sequences show a high level of identity starts at the KEI 
(I_ :¢s-Glu-Ile) sequence (residue 20 of M-caveolin, residue 47 of 
V-.zaveolin) and extends beyond the putative intramembrane 
dvmain. Within the N-terminal cytoplasmic portion of this 
co aserved segment lies a region of potential importance for the 
function of V-caveolin. Residues 61-101 have recently been 
shown to mediate oligomerization of V-caveolin [27] and resi- 
dues 82-101 to interact specifically with trimeric G-protein 
subunits [28]. Part of the latter region also shares homology 
w~ :h a conserved motif in Rab GDI proteins [28]. It therefore 
set'ms likely that M-caveolin also interacts with trimeric G- 
proteins. 

Fhe putative intramembrane domains of V-caveolin and 

M-caveolin are also highly conserved. By analogy to V-caveo- 
lin, we presume that this domain of M-caveolin also forms a 
hairpin structure in the membrane with both the N- and C- 
termini facing the cytoplasm [10]. The high degree of homology 
within this domain, and the lack of similarity to intramembrane 
domains of other membrane proteins, suggests a crucial role in 
membrane integration or in interaction with specific membrane 
components (see [29]). These interactions may be essential for 
targetting to, or formation of, caveolae [20]. The C-terminal 
cytoplasmic domains of M-caveolin and V-caveolin are the 
same length and show a high degree of similarity but are only 
55% identical. M-caveolin contains several cysteine residues 
which may be sites for palmitoylation as already shown for 
V-caveolin [30]. In particular Cys 116 and Cys 129 of M-caveolin, 
which correspond to Cys 143 and Cys 156 of V-caveolin, are in 
highly conserved regions. 

The most striking finding of the present study is the restricted 
tissue distribution of M-caveolin. Northern analysis showed 
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Fig. 6. Immunoelectron microscopic localisation of expressed HA- 
tagged M-caveolin in HeLa cells. HeLa cells were transfected with 
HA-tagged M-caveolin and then processed for frozen sectioning. Sec- 
tions were labelled with antibodies to the HA tag followed by 10 nm 
protein A-gold. Specific labelling is associated with caveolae (arrow- 
heads) but not with the intervening plasma membrane. Double arrow- 
heads indicate a clathrin coated pit for comparison. Bars = 100 nm. 

that M-caveolin is only present in muscle tissue and that it is 
induced upon differentiation of C2C 12 muscle cells. F rom pre- 
vious work it appears that V-caveolin is also expressed in mus- 
cle [14,31] but  does not  show the same restricted expression 
pattern as M-caveolin. The muscle-specific expression of 
M-caveolin provides a powerful system in which the function 
of this protein can be examined through knockout  mice and 
dominant  negatives or antisense in differentiating C2C12 cells. 
Our studies show that in fibroblasts M-caveolin and V-caveolin 
are targetted to the same caveolae. Thus M-caveolin has the 
appropriate signals for targetting to caveolae. Localisation of 
M-caveolin and V-caveolin at the ultrastructural level in muscle 
will now be required to see whether different subsets of caveo- 
lae exist in vivo. While caveolae of non-muscle cells have been 
implicated in diverse functions such as potocytosis [3], transcy- 
tosis [32] and signal transduction [4] their function in muscle is 
still unclear. In smooth muscle cells caveolae, defined morpho- 
logically and by V-caveolin labelling, are concentrated in spe- 
cific areas of the sarcolemma in dystrophin-rich domains [33]. 
In skeletal muscle caveolae are abundant  close to the T-tubules 
[34,35]. In view of the observed concentration of calcium-regu- 
lating molecules in caveolae of different cell types including 
smooth muscle [36,37] it is possible that muscle caveolae play 
some specific role in calcium signalling [35]. The further char- 
acterisation of M-caveolin should provide important  insights 
into the role of caveolae in muscle cells. 
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