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Genomic structure and alternative splicing of the murine bhk/ctk/ntk gene 
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Abstract Recently, we and others have cloned cDNAs encoding 
a second member of the Csk family of inhibitory protein kinases, 
which we termed Bhk [M.A. Ershler et al. (1994) Dokl. Akad. 
Nauk. 339, 679-683]. In the present study, two new distinct types 
of bhk mRNA were found in addition to the third form described 
previously. Analysis of the bhk genomic structure established that 
three exons participate in the alternative splicing of bhk mRNA. 
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1. Introduction 

Protein tyrosine kinases (PTKs) play an essential role in 
intracellular and extracellular signal transduction, which regu- 
lates cell proliferation and differentiation. A variety of  nonre- 
ceptor PTKs has been described to participate in intracellular 
signal transduction [1]. The most extensively characterized non- 
receptor PTKs belong to the Src-superfamily. The activity of  
Src-related enzymes is repressed by phosphorylat ion of  a con- 
served carboxyl-terminal tyrosine residue, an event mediated 
by a cytoplasmic protein kinase termed Csk [2,3]. Csk has no 
autophosporylation site within its kinase domain and is further 
distinguished from the Src-family of  kinases by the lack of  a 
conserved carboxyl-terminal tyrosine residue and myristoyla- 
tion site. We and others recently described c D N A s  encoding 
Csk-related P T K  [4,5,6,7,8], which was termed variously as 
Bhk, Ctk or  Ntk.  bhk/ctk/ntk (hereafter termed bhk) m R N A  
was found to be expressed predominantly in brain but also in 
hematopoietic tissues: thymus, spleen and bone marrow. 

In this report we demonstrate the existence of  alternatively 
spliced variants of  the bhk R N A ,  and characterize the genomic 
structure of  the gene. 

2. Materials and methods 

2.1. Cloning of 5" region of bhk mRNA 
The 'rapid amplification of cDNA ends' (RACE) procedure was 

performed as described in [9]. Brain poly(A) ÷ RNA was reverse tran- 
scribed with Superscript reverse transcriptase (Gibco BRL, Gaithers- 
burg, MD) using random hexamer primers. The product was tailed with 
dA by terminal transferase (Boehringer Mannheim, Indianapolis, IN) 
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Abbreviations." bp, base pair(s); kb, kilobase(s); PTK, protein tyrosine 
kinase; RACE, rapid amplification of cDNA ends; UTR, 5' untrans- 
lated region. 

The nucleotide sequences presented here have been submitted to the 
EMBL/GenBank database under accession numbers X89723, X89724. 

and amplified using the T13 primer (5'-GGGAGGCCCTTTTrTTT- 
TTTTT) and an antisense primer (5'-CTTGGGGCGAGAGTTC- 
TCA) corresponding to the 187-205 nucleotide position of the bhk 
clone [4], size selected on agarose gel and cloned into pcDNA II vector 
(Invitrogene, CA). Positive clones identified by hybridization with the 
5' bhk probe were sequenced by the termination method using Se- 
quenase (USB, Cleveland, OH). 

2.2. Isolation and mapping of genomic clones 
bhk genomic clones were isolated from a mouse (129SVJ strain) 

tFIXII  genomic library (Stratagene, San Diego, CA) using a radiola- 
belled 1.66 kb Bhk cDNA probe [4]. 106 recombinant phages were 
screened, 16 positive clones identified, and two of them plaque purified. 
Restriction mapping analysis of the 2, recombinant clones was per- 
formed by a partial endonuclease digestion combined with indirect end 
labeling [10] and by complete digestion with several restriction endonu- 
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Fig. 1. Nucleotide sequences of alternatively spliced 5' region of bhk 
mRNA. Exons participating in the formation of the splice variants are 
shown in parentheses. Dashed lines designate gaps added for optimal 
alignment. Solid lines indicate the boundary between exons, and num- 
bers indicate the involved exons. The putative translation initiation 
codons (ATG) are in bold typeface, while the upstream in-frame stop 
codons for each type of bhk cDNA are underlined. Identical residues 
are marked by double dots. The first 228 bases of ntk are shown 
according to [6]. 
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Fig. 2. Genomic and cDNA structure of bhk. At the top, the scale is 
given for genomic DNA, at the bottom for cDNA. Alignments of the 
lambda genomic clones and the PCR fragment generated from genomic 
DNA are given in the upper portion. A restriction enzyme map is shown 
in the middle (B = BamHI; N = NotI; H = HindlII; R = EcoRI). Exon/ 
intron structure is indicated in the lower portion; coding regions are 
shaded; arabic numerals indicate exon numbers. The structure of the 
alternatively spliced mRNAs is shown at the bottom. 

cleases. The exon/intron structure was determined by PCR with primers 
from different regions of the bhk cDNA sequence, followed by size 
determination by agarose electrophoresis and sequencing of PCR frag- 
ments with the aid of the SequiTherm sequencing kit (Epicentre Tech- 
nologies, Madison, WI). 

Table 1 
Exon/intron lengths and boundaries of the mouse bhk gene 

Amplification of a 6.2 kb PCR fragment, which contains exons 1 to 
4, from genomic DNA as template, was performed using the XL-PCR 
kit (Perkin-Elmer, Branchburg, N J). 

3. Results and discussion 

The b h k  c D N A  clone isolated previously had an open read- 
ing frame with no stop codons in the 5' untranslated region 
(5 ' -UTR) raising the possibility of  the existence of  additional 
coding sequences in the uncloned part of  the m R N A .  This 5' 
region was cloned using a R A C E  procedure. Twenty-one 5' 
region-derived sequences were found to form two groups. Ten 
sequences aligned in the group RACE1,  and eleven in R A C E 2  
(Fig. 1). Neither  has additional ATG codons in frame with the 
previously obtained sequence, but  do contain in-frame stop 
codons (Fig. 1). These sequences encode the same putative 
polypeptide product and differ only in their 5' untranslated 
sequences. The published c D N A  sequence of  n t k  [6] is almost 
completely identical to b h k  cDNA,  but contains a 134 bp insert 
in the 5' region. Thus there are at least three variants of  b h k  

m R N A  which diverge from the same point. These three vari- 
ants encode two putative peptides. All three sequences were 
found to be expressed in brain and thymus by RT-PCR proce- 
dure (data not  shown). 

Several tyrosine kinase mRNAs ,  for example lck  [11] and 
i g / r -H  [12], are known to have alternatively spliced 5 ' -UTR,  
although the function of  these regions is not  clear. Possible 
functions of  the 5' U T R  include the modulat ion of  m R N A  

Intron Exon Intron 

Splice acceptor size bp 

No. mBHK hCSK 

Splice donor Size kb 

mBHK hCSK 

1 > 252 > 68 GGAGACAAG gtgagtngg 4.2 > 6.4 
2 > 257 - CCTAAGCAG gtgagcgtg 0.6 

L P R 
cacacacag C CCT GGC TGC 3 134 - CTG CCT CGG gtaatgatc 0.]7 

[V S P] M P T 
ccttcacag GTG AGC CCT 4 60 80 ATG CCA ACG gtgagtgtg 0.75 0.3 

Q R W A C E 
ccttcccag CAG CGC TGG 5 114 I14 GCC TGT GAG gtgagaggg 0.05 0.I 

D K S L M P 
cctgtacag GAC AAG AGC 6 116 113 CTC ATG CC gtgagtngc 0.08 0.33 

W F H M V E 
atcctacag A TGG TTT CAT 7 220 220 ATG GTG GAG gtgacgtgt 0.35 0.92 

H Y T L A K 

cctccacag CAC TAC ACC 8 94 94 CTC GCC AAG G gtatgagag 0.7 0.18 
A G W E F G 

tctctgcag CT GGC TGG 9 66 66 GAG TTT GGA G gtgaggagg 0.5 0.08 
A V L V M T 

cctccacag CC GTC CTA I0 I00 100 GTG ATG AC gtgagtgtt 0.08 0.09 
K L Q V S K 

accccccag G AAG CTG CAG II 85 91 GTG AGC AAG gtgtgcagg 0.08 0.42 
G N L F A L 

cttaaacag GGC AAC CTG 12 74 74 TTT GCT CT gtaagtgac 0.09 0.1 
H V A K N G 

tgtctctag T CAT GTT GCT 13 196 196 AAA AAC GGG gtgagcagc 0.28 0.I 
R F S P K M 

gcccaacag CGG TTC TCC 14 87 87 CCC AAG ATG gtggtgagc 0.09 0.25 
S L K 

tgtccacag TCG CTA AAG 15 >355 866 

Sequences of exons are shown in uppercase letters, introns in lower case. The deduced amino acid sequence of Bhk is given above the nucleotide 
sequence. The amino acids of exon 4 are in brackets because only one of the alternatively spliced variants can be translated. The intron sequences 
adjacent to the exon and the length of exons which coincide in bhk and csk are in bold letters. 
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degradation [13] and regulation of translation efficiency [14]. It 
is therefore possible that the 5' UTR of the bhk RNA can be 
involved in the regulation of its translatability and/or stability. 
It has also been reported that the Lck PTK associates with the 
cytoplasmic tail of CD4 and CD8 through its 32 amino-termi- 
nal amino acid residues [15]. By analogy, the alternative amino- 
terminal regions of the Bhk protein may play a role in anchor- 
ing to membrane proteins or in substrate specificity of Bhk. 

To further analyze the mechanism of formation of different 
bhk RNA forms, we isolated the genomic copy of bhk. The 
corresponding restriction map and exon/intron structure is 
shown in Fig. 2. The gene consists of 13 coding exons and 
2 noncoding exons distributed over 10.5 kb. The sizes of the 
exons range from 60 bp to 355 bp (Table 1). The coding exons 
are distributed on 5.0 kb. The catalytic domain of Bhk is en- 
coded by seven exons, 9-15, while the SH3 domain is encoded 
by a single exon 5, and the SH2 domain is encoded by two 
exons, 6 and 7. The ATG codons, initiating translation in differ- 
ent alternatively spliced variants, are located in exons 3 and 4 
(see Fig. 1). The sequence of the exon/intron splice junctions 
conform to the consensus for donor and acceptor site [16] 
(Table 1). 

To gain insight into the evolution of the tyrosine kinase gene 
family, the genomic structure of bhk was compared with that 
of csk [17], which belongs to the same subclass of tyrosine 
kinases. A striking similarity in the exon/intron structure be- 
tween the two genes was found. Out of 15 exons in bhk only 
two exons, 2 and 3, have no analogs in esk (Table 1). The first 
three exons of the bhk gene form three alternatively spliced 
cDNAs that encode two putative peptides, whereas alternative 
splicing has not been demonstrated for csk. Of the remaining 
13 exons, three exons contain untranslated regions, 1, 4 and 15 
(see Fig. 2). Ten exons have exactly the same boundaries; of 
these ten exons, eight have exactly the same size in both genes 
and the other two coding exons, 6 and 11, differ in length by 
exact multiples of three nucleotides (Table 1). Analysis of the 
genomic organization of bhk strongly supports the assumption 
that Bhk and Csk belong to the same class of PTKs and may 
arise from duplication of the same ancestor gene. 

In conclusion, we established the complete genomic structure 
of the murine bhk gene. A partial genomic structure of bhk was 
reported by earlier by Hamaguchi et al. [18]. Their map lacks 

exons 1 and 3 in our classification. When this manuscript was 
prepared for publication, existence of alternative forms of bhk 
mRNA was reported by Kaneko et al. [19]. 
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