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Abstract To increase the cell adhesion activity of 74RGD4, an 
RGDS-inserted mutant between Va] 74 and Asn 7s of human ly- 
sozyme, one more site for the RGD introduction was investigated 
in the lysozyme molecule. We found that 47RGD4 with RGDS 
in place of AGDR (residues 47 to 50) in a/]-turn region possesses 
the same level of adhesion activity as that of 74RGD4. The 
acceptance of the RGD introduction in the l~-turn region of 
human lysozyme is in good agreement with recent studies on the 
functional conformation of RGD. We constructed (47,74)RGD4, 
a mutant containing RGD at two sites, by combining the N- 
terminal domain of 47RGD4 and the C-terminal domain of 
74RGD4. The (47,74)RGD4 lysozyme, with two functional RGD 
sequences, exhibits even higher cell adhesion activity than that of 
74RGD4 or 47RGD4. 
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I. Introduction 

The Arg-Gly-Asp (RGD)  sequence is well-known as a site in 
cell adhesive proteins such as fibronectin [1], vitronectin [2], and 
fibrinogen [3] for binding to their receptors, the integrins [4]. 
We previously constructed a mutant,  74RGD4,  by inserting 
R G D S  of  human fibronectin between Val TM and Asn 75 in a 
flexible loop region of  human lysozyme, using a yeast expres- 
sion system [5]. To increase the cell adhesion activity of  the 
74RGD4 mutant ,  we constructed another  mutant,  Cys-RGD4,  
by inserting R G D S  flanked by two Cys residues at the same site 
in the lysozyme molecule [6]. This design is based on the fact 
that the cyclic form of  an RGD-conta in ing  peptide has much 
higher affinity to the integrins than the linear counterpart  [7]. 
For  both mutants,  we have already reported the structural and 
functional analyses, and discussed the functional conformat ion 
of  the R G D  sequence [5,8]. 

In parallel with the construction of  Cys-RGD4,  we have tried 
another  design to tailor the 74RGD4 mutant  to possess higher 
adhesion activity. In this study, we have searched for one more 
R G D  introduction site in the lysozyme molecule. Here we re- 
port  the construction of  (47,74)RGD4, a mutant  lysozyme con- 
taining R G D  at two sites, and its functional evaluation. The 
structural feature of  the possible introduction site of  R G D  in 
human lysozyme is discussed, in connection with the functional 
conformat ion of  R G D .  

*Corresponding author. Fax: (81) (6) 872 8210. 

Abbreviations." RGD, Arg-Gly-Asp; BHK, baby hamster kidney. 

2. Materials and methods 

2.1. Vector constructions 
Oligonucleotides were chemically synthesized using an automated 

DNA synthesizer (Model 380B, Applied Biosystems). The mutation 
was performed in M 13mp 19XhLZM using the site-directed mutagene- 
sis system Mutan-K (Takara Shuzo). The primer used for the con- 
struction of 47RGD4, for example, was 5'-AGTCTGTAGA- 
ACTGTCGCCACGGTTGTAATT-3'. The underlined bases indicate 
mismatches. The sequence of the mutated gene was confirmed by dide- 
oxy sequencing. The genes encoding the signal sequence and the mu- 
tated human lysozyme were combined with an XhoI- Sinai large frag- 
ment from pERI8602 [9] to construct the expression plasmid. 

The M13mpl9XhLZM plasmid possesses an XbaI restriction site 
between codons corresponding to Ser 61 and Arg 62 of human lysozyme 
[9]. To construct the (47,74)RGD4 expression plasmid, the following 
three fragments were combined: an XhoI-XbaI fragment encoding the 
signal sequence and the N-terminal domain of 47RGD4, an XbaI-SmaI 
fragment encoding the C-terminal domain of 74RGD4 [5], and an 
XhoI-SmaI large fragment from pERI8602. 

2.2. Expression and purification o f  mutant human lysozymes 
Mutant human lysozymes were expressed in yeast as described previ- 

ously [10]. Secreted mutant lysozymes were purified essentially as de- 
scribed [9]. HPLC was performed using a cation-exchange column 
(Asahipak ES-502C; Asahikasei, Japan) and a hydroxyapatite column 
(TAPS-020810, Tonen K.K., Japan). 

2.3. Measurement o f  activity 
Lytic activity was measured using Micrococcus lysodeikticus cells as 

a substrate [9]. Protein was determined by measuring the weight in the 
freeze-dried form of each mutant lysozyme. 

Cell adhesion activity was determined using baby hamster kidney 
(BHK) cells as described [6,11]. The amount of lysozyme adsorbed onto 
a plate was estimated by subtracting the unadsorbed amount from the 
added amount of lysozyme in the assay. The unadsorbed amount was 
determined based on the lytic activity remaining in the sample solution 
after binding to the plate. The results indicated that the adsorption 
efficiency was in the range of 60-80% at the concentrations shown in 
Fig. 2, for both native and mutant lysozymes. 

3. Results and discussion 

We previously constructed a cell adhesive protein, 74RGD4,  
by inserting the R G D S  sequence between Val TM and Asn 75 in a 
long loop consisting of  residues of  Cys 65 to Cys 8~ in human 
lysozyme [5]. The backbone structure of  the 74RGD4 lysozyme 
refined by X-ray crystallography is shown in Fig. 1. To find an 
R G D  introduction site in a different region than the long loop 
of  the lysozyme molecule, we tried to construct three lysozyme 
variants by means of  site-directed mutagenesis, namely 
14RGD4 with R G D S  in place of  R L G M  (residues 14 to 17) in 
an a-helix, 41RGD4 with R G D S  in place of  R A T N  (residues 
41 to 44) in a fl-sheet, and 47RGD4 with R G D S  in place of  
A G D R  (residues 47 to 50) in a fl-turn. The 47RGD4 mutant  
was secreted with high efficiency in our  yeast expression system 
(Table 1), while the 14RGD4 and 4 1 R G D 4  mutants failed to 
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Fig. 1. Stereo drawing of the backbone structure of the 74RGD4 ly- 
sozyme. The picture was produced with the program MOLSCRIPT [20] 
using the atomic coordinates of 74RGD4 [5]. The a-helix and fl-strand 
parts are shown as a ribbon model. The RGD introduction sites in this 
study are labeled. 

be folded correctly, and were not  secreted from the yeast cells. 
The lytic activity of 47RGD4 as well as 74RGD4 was nearly 
the same as that of  the native form (Table 1), indicating that 
these R G D  introductions had no effect on the active cleft of  
human  lysozyme. The successful folding of these fully active 
mutants  is probably due to the distant location of the introduc- 
t ion sites from the active cleft [12]. 

Using baby hamster kidney (BHK) cells, 47RGD4 was 
shown to possess the same level of adhesion activity as that of  
74RGD4 (Fig. 2). We also produced another mutant ,  
101RGD4, by substituting R G D S  for R D P Q  (residues 101 to 
104) in a turn-like region of the lysozyme molecule. In the cell 
adhesion assay, however, the 10 tRGD4 mutant  was inactive. 
This is probably because the R G D  region of the 101RGD4 
lysozyme fails to have a fl- turn structure owing to the location 
in the bot tom of a loop consisting of residues o fArg  m~ to Val u° 
[12] (Fig. 1). On the other hand,  the R G D  sequence of the 
47RGD4 mutant  is destined to assume a stable turn conforma- 
tion, since the two fl-strands, Ala42-Asn 46 and SerhLGly 55, con- 
nect by the R G D S  (residues 47 to 50) to form a rigid fl-sheet 
(Fig. 1). Thus, these results suggest that the introduction of a 
functional R G D  sequence is acceptable only in a certain fl-turn 
region of human  lysozyme. 

This structural information about  the R G D  introduction site 
is in good accordance with the experimental studies on the 
functional conformat ion of  the R G D  region in several proteins. 
We have recently solved the X-ray crystal structure of the 

Table 1 
Production and relative lytic activity of each mutant lysozyme 

Lysozyme Productivity a (mg/1) Relative lytic activity 
(%) 

Native 5.3 100 
74RGD4 6.3 109 
47RGD4 4.5 92 
(47,74)RGD4 6.7 83 

a Based on lyric activity in the culture supernatant. 

CRGDSC-inser ted lysozyme, Cys-RGD4. The R G D  sequence 
in this protein resides within a stable type II '  fl-turn, with Gly 
and Asp in positions 2 and 3 of the turn [8]. The fibronectin type 
III domain from human  tenascin [13], and the leech protein 
decorsin [14] also have type II '  f l- turn structures in their R G D  
regions. In addition, a flexible conformation of R G D  has been 
reported in the 74RGD4 lysozyme [5], the tenth type III module 
of human  fibronectin [15], and the disintegrins, a family of 
integrin antagonists from snake venoms [16,17]. In these cases, 
the R G D  region, which is highly flexible by nature, could as- 
sume a rigid turn conformation when it binds to integrins to 
form a l igand-receptor complex. It is also possible to consider 
that the R G D  region has a type II '  f l-turn by itself, and that 
it was ill-defined because of its location at the apex of a flexible, 
long loop. 

We finally constructed (47,74)RGD4, a mutan t  containing 
R G D  at two sites, by combining the N-terminal  domain of 
47RGD4 and the C-terminal domain of 74RGD4, as described 
in section 2. The (47,74)RGD4 lysozyme was successfully se- 
creted with full lytic activity (Table 1). As shown in Fig. 2, the 
(47,74)RGD4 lysozyme exhibited even higher adhesion activity 
to B H K  cells than that of  74RGD4 or 47RGD4. It was also 
confirmed that this activity is nearly equal to 10% of human 
vitronectin activity (Fig. 2). The difference might be reasonable, 
if we consider that the natural  cell adhesive proteins including 
vitronectin, possess a second binding site besides the R G D  
region to exhibit the opt imum affinity for the integrins [17 19]. 
The cell adhesion activities of the three mutants,  74RGD4, 
47RGD4,  and (47,74)RGD4, were completely inhibited by the 
addition of either G R G D S P  peptide or polyclonal ant ibody 
against vitronectin receptor, as was the case for the vitronectin 
activity (data not shown). The results indicate that the cell 
adhesion signals in these mutan t  lysozymes are transduced to 
BHK cells through the interaction with the vitronectin recep- 
tor, the integrin ~vfl3. 

The high cell adhesion activity of the (47,74)RGD4 mutant  
suggests that both of the introduced R G D  sequences are func- 
tional. This speculation was further supported by additional 
experiments, in which each substitution of Glu for Asp in the 
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Fig. 2. Cell adhesion assay on the substrates coated with each mutant 
lysozyme. The plastic substrates were coated with different concentra- 
tions of vitronectin (o), native lysozyme (e), 74RGD4 (A), 47RGD4 
(A), and (47,74)RGD4 (D). BHK cells were incubated on the substrates 
for 60 min at 37°C in a CO2 incubator. The cell adhesion activity was 
expressed as the number of cells adhering to unit surface area (cm2). 
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two RGD-conta in ing  regions of (47,74)RGD4 results in a sig- 
nificant decrease in the cell adhesion activity (data not  shown). 
In addition, adhesion activity in a mixture of 74RGD4/ 
47RGD4 (1:1) was similar to that of  (47,74)RGD4, when ex- 
pressed against their R G D  concentrations (data not shown). 
These results suggest that the higher activity of (47,74)RGD4 
is due to the increased concentrat ion of the R G D  sites, namely 
the additive effect of 74RGD4 and 47RGD4. 

We have reported the successful construction of 
(47,74)RGD4, a cell adhesive lysozyme with two functional 
R G D  sequences, and discussed the structural feature of the 
possible introduction site of R G D  in human lysozyme. Accord- 
ing to the model structure of the lysozyme molecule (Fig. 1), 
the two R G D  introduction sites are located at a considerable 
distance (19.4 A). Thus, the (47,74)RGD4 mutant  may be use- 
ful as a functional cross-linker in RGD-dependent  cell-to-cell 
interactions, differently from 74RGD4 or 47RGD4. 
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