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Insulin stimulates hormone-sensitive cyclic GMP-inhibited cyclic 
nucleotide phosphodiesterase in rat brown adipose cells 
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Abstract The presence and regulation of a hormone-sensitive 
cyclic GMP-inhibited cyclic nucleotide phosphodiesterase (cGl 
PDE) in rat brown adipose cells was investigated, cDNA clones 
for two cGl PDE isoforms, cGIPI and cGIP2, have been iso- 
lated. Using a rat cGIPI (RcGIPI) cDNA probe, RcGIPI 
mRN A (~5.3 kb) was detected in Northern blots of both brown and 
white adipose RNA. cGl PDE was detected in both microsomal 
and plasma membrane fractions of brown and white adipose cells 
by Western blotting using anti-RcGIPl peptide antibody. When 
cells were incubated with insulin before membrane preparation, 
cGl PDE activity in the microsomal fraction was increased by 
2- to 2.5-fold within I0 min. Isoproterenol also stimulated the 
activity of cGl PDE in the microsomal fraction by 1.5-fold. In 
cells incubated with both insulin and isoproterenol, microsomal 
cGl PDE activity was similar to that in microsomal fractions 
isolated from cells incubated with insulin alone. These results 
suggest that the hormonal regulation of cGl PDE, presumably 
a cGIPI isoform, in rat brown adipose cells is similar to that in 
white adipose cells. 
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I. Introduction 

Two types of adipose tissues with quite different functions 
are present in mammals: white adipose tissue whose main func- 
tion is energy storage and brown adipose tissue (BAT), which 
is the major site of non-shivering and diet-induced thermogene- 
sis. BAT is thought to play an important role in energy balance 
by dissipating excess energy intake as heat. Several rodent mod- 
els of genetic obesity that are associated with development of 
diabetes mellitus, such as the Zucker rat and ob/ob mouse, have 
been reported to be associated with defective BAT function 

[1,2]. Recently, the cDNA for uncoupling protein (UCP) which 
is uniquely expressed in BAT mitochondria has been cloned [3] 
and used to identify brown adipose cells in white adipose tis- 
sues. In morphological studies, UCP has been identified in 
human BAT [4,5]. Therefore, understanding hormonal regula- 
tion of BAT may be useful in understanding the pathogenesis 
of human obesity and insulin resistance in non-insulin depend- 
ent diabetic patients [6-9]. 

Thermogenesis in BAT activated by nonadrenaline is 
thought to be mediated via a ,8-adrenergic pathway and cyclic 
AMP. Adenylyl cyclases serve as biological transducers, which 
generate cAMP in response to extracellular stimuli and cyclic 
nucleotide phosphodiesterases (PDE) represent the only known 
mechanism for the degradation of  cAMP [10]. Seven mammal- 
ian PDE gene families have been identified and classified on the 
basis of their most salient characteristics, i.e. their different 
substrate affinities, responses to specific effectors, sensitivities 
to specific inhibitors, biochemical and physical properties, and 
regulatory control mechanisms [10]. In intact cells, type III (or 
cGI) PDEs are activated by insulin and catecholamines or other 
agents that increase cellular cAMP concentration [11]. The 
regulation of cGI PDE in rat white adipose cells and 3T3-L1 
adipocytes has been well characterized [12-18]. In white adi- 
pose cells, insulin decreases intracellular cAMP concentration 
and exerts its anti-lipolytic action, at least in part, via activation 
of cGI PDE. Recently, two distinct but related cDNAs for cGI 
PDEs (cGIP1 and 2) have been cloned from rat(R) adipose 
tissue and human(H) myocardial cDNA libraries. RcGIP1, 
thought to be hormone sensitive, is relatively highly expressed 
in white adipose cells [19,20]. It has also been reported that the 
inhibition of PDEs increases oxygen consumption and glucose 
uptake in brown adipose cells [21,22]. This is the first report on 
the regulation o f c G I  PDE, most likely a cGIP1 isoform, in rat 
isolated brown adipose cells by insulin and isoproterenol. 

2. Experimental 
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2.1. Materials 
Male Sprague-Dawley rats, purchased from Charles River Breeding 

Laboratories Inc. (Boston, MA), were fed standard NIH chow ad 
libitum for at least 5 days prior to use. Insulin was a gift from Dr. R.B. 
Chance (Eli Lilly, Indianapolis, IN). Fraction V bovine serum albumin 
was purchased from Intergen (Purchase, NY) and class II crude collage- 
nase was obtained from Worthington Biochemical (Freehold, NJ). Pep- 
statin, leupeptin and AEBSF were purchased from Boehringer 
Mannheim Biochemicals (Indianapolis, IN). Cilostamide was kindly 
supplied by Otsuka Pharmaceutical Co. (Tokushima, Japan). Rabbit 
polyclonal antiserum P2T2, prepared against a peptide (RRSS- 
GASGLLTSEHHSR, amino acids 424 440) sequence in the regulatory 
domain of RcGIPI [19], was a gift from Dr. E. Degerman (University 
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of Lund Medical School, Sweden) and IgG was purified by protein G 
from P2T2. All radiolabelled compounds were purchased from Du- 
Pont-New England Nuclear (Boston, MA). 

2.2. Preparation of rat brown adipose cells 
Rats (6 weeks old) were anesthetized with a gas mixture of 70% CO2, 

30% 02 and killed by decapitation. Excised interscapular brown adipose 
tissues were cleaned, minced and digested with the combination of 
collagenase and DNase I as described previously [22]. After the final 
washing, brown adipose cells were suspended and incubated in Krebs 
Ringer bicarbonate Hepes buffer (KRBH buffer, 120 mM NaCI, 4 mM 
KH2PO4, 1 mM MgSO 4, 1 mM CaCI2, 10 mM NaHCO3, 30 mM Hepes, 
pH 7.4) containing 5% serum albumin, 2.5 mM glucose and 200 nM 
adenosine. White adipose cells were prepared from rat epididymal fat 
pads as described previously [12]. 

2.3. Preparation of P1 and P2 fractions from brown adipose cells 
Two ml of cells (3.6 x 106 cells/ml) were incubated with additions as 

indicated in KRBH buffer containing 5% albumin, 2.5 mM glucose and 
200 mM adenosine at 37°C for specified periods. To remove adenosine 
where indicated, 1 U/ml of ADA was added to the incubation solution. 
Cells were usually incubated for 15 min with insulin and 10 min with 
isoproterenol. The cell suspensions were then centrifuged (100 x g, 60 
s) and the buffer was discarded. Cells were suspended in 10 ml of 
TES/sucrose buffer (10 mM TES, pH 7.0, 250 mM sucrose, 5 pg/ml 
pepstatin, 1/tg/ml leupeptin and 0.5 mM AEBSF) at room temperature, 
homogenized (4°C in a glass Teflon homogenizer), and centrifuged in 
a Sorvall SS-34 rotor (9500 rpm, 10,000 x g, 15 min). The pellet contain- 
ing plasma membranes, mitochondria and nuclei (PI fraction) was 
suspended in 200/11 of TES/sucrose buffer, pH 7.4, and homogenized 
(dounce homogenizer). The supernatant was further centrifuged in a 
Beckman 70.1 Ti rotor at 65,000 rpm (300,000 x g) for 45 rain and the 
microsomal pellet (P2 fraction) was suspended in 150,ul of TES/sucrose 
buffer, pH 7.4. Protein concentration was measured using BCA reagent 
(Pierce, Rockford, IN) with bovine serum albumin as standard. 

2.4. cGl PDE assay 
The activity of PDE in membrane fractions was assayed in duplicate 

with 0.5 pM [3H]cyclic AMP as substrate as previously described [12]. 
The specific activity of cGI PDE was calculated from the difference 
between activities in the presence and absence of 0.5 pM cilostamide, 
a specific inhibitor of cGI PDE [23]. 

2.5. Northern and Western blotting 
Total RNA was extracted from isolated rat brown and white adipose 

cells by the method described previously [24]. Approximately 10 pg of 
total RNA was subjected to electrophoresis in 1% agarose/formalde- 
hyde gels (25 V, 20 h). Gels were stained with ethidium bromide and 
RNA was then transferred to nylon membranes and fixed by using a 
UV cross-linker (Stratalinker, from Stratagene, LaJolla, CA). The 
nylon membranes were prehybridized and then hybridized overnight at 
65°C with 32p-labelled partial rat cGIP1 cDNA clone (nt 818 3391) [19] 
labelled by the random priming technique (Stratagene). Following a 
brief washing at room temperature with 2.0 x SSC (1 x SSC is 0.15 M 
NaCI/0.15 M sodium citrate, pH 7.0) containing 0.1% SDS, membranes 
were washed with 1.0 x SSC containing 0.1% SDS for 20 rain at 65°C, 
and then washed with 0.5 x SSC containing 0.1% SDS for 20 min at 
65°C before exposure to Kodak X-ray film with an intensifying screen 
for 3 days at -70°C. 

For Western blotting, 50 pg of membrane fractions, solubilized in 
sample buffer (2.3 M urea, 1.5% SDS, 15 mM Tris-HC1, pH 6.8 and 
100 mM dithiothreitol), were subjected to SDS-PAGE (8% gel) and 
transferred to a nitrocellulose membrane, which was incubated with 
anti-RcGIP1 peptide IgG (P2T2). Bound IgG was labelled with 
[125I]protein A and exposed to Kodak X-ray film for 2 days at -70°C. 

3. Results and discussion 

3.1. Expression o f  eGI P D E  m R N A  and protein in rat brown 
adipose cells 

A part ia l  RcGIP1  c D N A  clone hybridized strongly with -5 .3  
kb  m R N A  species in R N A  f rom b o t h  white  and  b rown adipose 

28S - -  

5.3kb 

1 8S 

W B  
Fig. 1. Northern blots hybridized with probes to detect RcGIP1 mRNA 
in rat brown and white adipose cells. Total RNA (10/tg/lane) was 
extracted from isolated rat brown and white adipose cells, subjected to 
electrophoresis in a 1% agarose/formaldehyde gel, transferred to a 
nylon membrane, hybridized with 32P-labelled cDNA probe (RcGIP1, 
nt 818-3391 [19]) and washed as described in section 2. B, brown 
adipose cells; W, white adipose cells. 

cells (Fig. 1), indicat ing tha t  cGIP1 m R N A  in b rown adipose 
cells is the same size as tha t  in white adipose cells. Proteins  in 
b o t h  b rown and  white adipose cells o f - 1 5 0  kDa  and  - 4 1  kDa  
(Fig. 2) reacted in Western blots  with  an  an t i -RcGIP l -pep t i de  
an t ibody  raised against  a peptide cor responding  in sequence to 
amino  acids 4 2 4 4 4 0  in the deduced sequence f rom RcGIP1  
[19,25]. React ion  with mater ia l  - 8 2  k D a  was non-specific as it 
did not  d isappear  when  the an t ibody  was incuba ted  with the 
immuniz ing  peptide before use. The  sizes o f c G I  P D E  in b rown 
and  white adipose cells in the present  exper iments  are some- 
wha t  different f rom those repor ted  in white adipose cells f rom 
which 135-kDa and  44-kDa  32p-labelled proteins  were precipi- 
ta ted by ant i -cGI  P D E  an t ibody  [15,17]. The  reason for this 
appa ren t  discrepancy in molecular  size is unknown.  

3.2. Stimulation o f  cGI P D E  in brown adipose cells by insulin 
The concen t ra t ion-dependency  of  insul in-s t imulat ion of  cGI  

PDE (cilostamide-sensit ive PDE)  activity in b rown  adipose cell 
PI (plasma and  mi tochondr ia l  membrane )  and  P2 (microsomal)  
fract ions is shown in Fig. 3. Insul in  (1 n M )  increased cGl  P D E  
activity in P2 fract ions by approximate ly  2-fold (Fig. 3c). Insu- 
lin also enhanced  cilostamide-sensit ive cGI  P D E  activity in P1 
fract ions (Fig. 3c). Insul in  did not  significantly change cilo- 
s tamide-insensi t ive P D E  activities in P1 or P2 fract ions (Fig. 
3a,b). 

3.3. Stimulation o f  cGI P D E  in brown adipose cells by 
isoproterenol 

It has  been repor ted tha t  c A M P - d e p e n d e n t  prote in  kinase 
phosphory la tes  and  activates cGI  P D E  in white adipocytes,  
p robab ly  related to 'feed back '  regulat ion of  c A M P  concentra-  
t ions [15,17]. As seen in Fig. 4 in the presence of  extracellular  
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Fig. 2. Subcellular distribution ofcGI PDE in brown and white adipose 
cells. P1 and P2 fractions were prepared from isolated rat brown and 
white adipose cells and protein (50/lg of each) was subjected to Western 
blotting with IgG (P2T2) purified from rabbit polyclonal antiserum 
raised against a peptide sequence within the regulatory domain of 
RcGIP1 as described in section 2. B, brown adipose cells; W, white 
adipose cells; PI, PI fraction; P2, P2 fraction. 

adenosine, isoproterenol stimulates cGI PDE in P2 fractions of 
brown adipose cells. Maximal stimulation was 1.5-fold at 100 
nM isoproterenol. 

Noradrenaline and insulin are two major regulators of BAT 
function; thermogenic activity is regulated by noradrenaline 
and glucose uptake is stimulated by both insulin and noradre- 
naline in vivo [26,28] and in vitro [21,22]. As seen in Fig. 5, when 
cells were treated with both insulin and isoproterenol, cGI PDE 
activity was no greater than that observed in the presence of 
insulin alone, cGI PDE activity was not apparently changed in 
the presence of adenosine deaminase, which would have re- 
moved any adenosine released during incubation of brown ad- 
ipose cells. 

BAT is the major site of thermogenesis and very active in 
newborn babies, hibernating animals, and cold-adapted ani- 
mals. Thermogenesis in BAT is regulated by hormones, such 
as noradrenaline, insulin and thyroid hormone [28]. Heat pro- 
duction in BAT is directly regulated by the secretion of norad- 
renaline from sympathetic nerve terminals and the mass of 
BAT is increased when animals are adapted to cold. The fl3- 
adrenergic receptor agonist, D7114, stimulates proliferation of 
brown adipose cells in primary culture [29] and the effect of cold 
exposure on cell proliferation in vivo is inhibited by denerva- 
tion of BAT [30]. It has also been reported that the amount of 
the energy released from BAT is related to the amount of UCP 
in BAT and gene expression of UCP is regulated by both T3 
and cAMP [31]. Noradrenaline and insulin are thought to have 
synergistically positive effects on long-term regulation of ther- 
mogenesis in BAT. With respect to short-term regulation, insu- 
lin stimulates lipogenesis and glucose transport, and noradre- 
naline stimulates lipolysis, fl-oxidation of fatty acids, glucose 
oxidation and glucose transport, and suppresses lipogenesis 
[32]. Thus, in regulation of lipogenesis and lipolysis, insulin and 
noradrenaline are counter regulatory, and at least some of the 
effects of insulin in BAT as in white adipose cells may involve 
activation of an insulin-sensitive cGIP1. Recently, the presence 
of cGIPI mRNA in BAT was demonstrated by in situ hybrid- 
ization [33], consistent with our findings of virtually identical 
cGIP1 mRNA species from white and brown adipose tissue. 
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Maximal activation of white adipose cell cGI PDE was ob- 
served at ~0.1 and -100 nM insulin and isoproterenol, respec- 
tively [17]. As shown in our studies (Figs. 3 and 4), the sensitiv- 
ity of cGI PDE to insulin stimulation in brown adipose cells is 
one tenth of that in white adipose cells; i.e. insulin concentra- 
tions o f -  1 nM were required for maximal cGI PDE activation. 
The maximally effective concentration of isoproterenol was 
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Fig. 3. Stimulation of cGI PDE (cilostamide-sensitive PDE) activity in 
P1 and P2 fractions from brown adipose cells by insulin. Cells were 
incubated with various concentrations of insulin prior to preparation 
of membrane fractions as described in section 2. Open columns show 
cilostamide-sensitive PDE (cGI PDE) activity and closed columns show 
cilostamide-insensitive PDE activity. (A) PDE activity in P1 fractions. 
(B) PDE activity in P2 fractions. (C) cGI PDE activity: closed circles, 
cGI PDE activity in P2 fractions; and closed triangles, cGI PDE activity 
in PI fractions. Data are mean + S.E.M. of three individual experi- 
ments. 
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Fig. 4. Effects of isoproterenol on cGI PDE (cilostamide-sensitive 
PDE) activity in P2 fractions from brown adipose cells. Cells were 
incubated with various concentrations of isoproterenol for 10 min prior 
to preparation of membrane fractions as described in section 2. Data 
are shown as mean + S.E.M. of three individual experiments, with 
S.E.M. of + 0.4 for 0-isoproterenol. 

similar in brown and white adipose cells. In contrast, however, 
to white adipose cells, brown adipose cells (Fig. 5) did not  
apparently respond synergistically to insulin and isoproterenol 
[14]. Thus, 'feed back'  regulation of  c A M P  content  in brown 
adipose cells via activation of  cGI  P D E  by noradrenaline may 
be less than in white adipose cells. 

In white adipose cells, activation o f c G I  P D E  is an important  
component  of  the antilipolytic action of  insulin [11]. BAT has 
an extremely high rate of  glucose utilization when stimulated 
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Fig. 5. Effects of isoproterenol on insulin-stimulated cOI PDE (cilo- 
stamide-sensitive) activity in P2 fractions from brown adipose cells. 
Cells were incubated with insulin and/or isoproterenol prior to prepara- 
tion of membrane fractions as described in section 2. BAS, basal condi- 
tion (cells were incubated in the buffer for 25 min); INS, cells were 
incubated in buffer for 10 min and then with 10 nM insulin for 15 min; 
ISO, ceils were incubated in buffer for 15 min and then with 100 nM 
isoproterenol for 10 min; INS/ISO, cells were incubated with 10 nM of 
insulin for 15 min and then with 100 nM of isoproterenol for 10 min. 
In the absence of adenosine, 1 U/ml of ADA was added to the incuba- 
tion media. Closed columns present results with adenosine; open col- 
umns, without adenosine. Data are mean + S.E.M. of three individual 
experiments. 

by insulin under physiological conditions [34]. To determine 
whether abnormal  expression of  cGI  PDE might be involved 
in the pathogenesis of  obesity, we investigated the m R N A  and 
protein content  of  cGIP1 in brown and white adipose cells of  
six-week-old genetically obese Zucker  rats. We did not find any 
differences between adult lean and obese rats (data not shown), 
suggesting that cGIP1 expression was not altered and perhaps 
not  related to development o f  obesity (at 6 weeks) in this model 
system. Whether  regulation of  brown adipose tissue cGI PDE 
activity is abnormal  or altered in these animals is not known. 

In summary, we report  here that the same insulin-sensitive 
cGI  PDE (cGIP1) found in white adipose cells is expressed in 
brown adipose cells. Brown adipose cell cGI  PDE is less sensi- 
tive to hormonal  regulation than is white adipose cGI  PDE. 
Both brown and white adipose cGI PDEs,  by regulating cAMP, 
may be important  in triacylglycerol metabolism. 
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