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Abstract A gene, designated dnr, was identified in the vicinity 
of  the structural genes for nitrite reductase (nirS) and nitric oxide 
reductase (norCB), and the gene for activation of  the reductases 
(nirQ) from Pseudomonas aeruginosa. It encodes a protein of  227 
amino acids homologous with the CRPIFNR-fami ly  transcrip- 
tional regulators. Promoter activities for nirS, nirQ and norCB 
were considerably reduced in the dnr mutant as well as in the 
mutant of  anr, the other fnr-like regulatory gene from P. aeru- 
ginosa. This is the first finding that two CRP/FNR-related regu- 
lators are involved in denitrification in one strain. 
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1. Introduction 

fnrA gene was very similar to that of  the anr gene, the fnrA 
mutant  of  P. stutzeri was able to grow on nitrate under the 
anaerobic condition. The activity of  denitrification enzymes 
was not affected by the fnrA mutat ion whereas the activity of  
arginine deiminase was defective. F r o m  these results, Cuypers 
and Zumft  predicted that Fn rA is a specific regulator for argin- 
ine catabolism and that a second hypothetical F N R  homolog,  
designated FnrD,  controls the expression of  the denitrification 
enzymes in P. stutzeri [13]. 

In this work, we found a second crp/fnr-related gene from P. 
aeruginosa. We propose to call the gene as dnr for dissimilatory 
nitrate respiration regulator. It is uncertain that dnr corre- 
sponds to the hypothetical regulatory gene, fnrD, from P. 
stutzeri at present, but the anaerobic growth by nitrate respira- 
tion and transcription of  the nit and nor genes of  P. aeruginosa 
completely depended on the gene. 

Bacterial denitrification is an anaerobic respiration to use 
nitrogenous oxides as terminal electron acceptors. Four  en- 
zymes, i.e. nitrate reductase, nitrite reductase, nitric oxide re- 
ductase and nitrous oxide reductase, are required for complete 
reduction of  nitrate ion to dinitrogen gas. These enzymes are 
induced under the low oxygen environment. Expression of  the 
denitrification genes under the anaerobic condition is thought 
to be controlled by a regulatory protein similar to F N R  of  
Eseherichia coli. F N R  is a transcriptional regulator for anaero- 
biosis of  E. coli which belongs to the same family with CRP, 
the regulator for catabolite gene repression [1]. There is a spe- 
cific recognition sequence ( F N R  box), TTGATATCAA,  in the 
promoter  region of  the anaerobically expressed genes regulated 
by FNR.  Many of  the denitrification genes so far sequenced 
have motifs resemble to the F N R  box in their promoter  region 
[2 9]. The gene, anr, which is homologous with fnr of E. coli 
was found from Pseudomonas aeruginosa and shown to be nec- 
essary for anaerobic arginine catabolism and nitrate reduction 
[10,11]. The genes for dissimilatory nitrite reductase (nirS) and 
nitric oxide reductase (norCB) had A N R  (FNR)-binding motifs 
in their promoter  region [4,5] and the transcription ofnirS was 
defective in the anr mutant  [12]. A gene homologous with fnr 
was also isolated from Pseudomonas stutzeri by using the anr 
gene from P aeruginosa as a hybridization probe and desig- 
nated fnrA. Although the derived amino acid sequence of  the 

2. Materials  and methods 

2.1. Bacterial strains and plasmids 
P aeruginosa PAO1 [14] was used as a source for the denitrification 

genes and to represent a wild-type trait. PAO6261, the anr mutant of 
P aeruginosa PAO1 was provided by D. Haas [15]. A plasmid, pHA- 
El, which carries a 6.5 kb EcoRI fragment containing ORF7 and a part 
of the dnr gene was cloned in the previous work [5]. Charomid 9-36 
(Nippon gene, Toyama, Japan) was used for cloning a fragment con- 
taining the complete dnr gene. pUC119 [16] was used for subcloning, 
sequencing and mutagenesis of dnr. For the assay of promoter activity, 
the lacZ promoter probe vector pQF50 [17] was used. Escherichia coli 
hosts were strain DH5 for Charomid and strain JM109 for other plas- 
raids [16]. 

2.2. Media and growth conditions 
Bacterial strains were cultivated at 37°C in LB medium or on LB 

plate [16]. Cultivation for promoter assay was done in the synthetic 
medium described by Wood [18] supplemented with 5 mM sodium 
nitrite instead of 40 mM sodium nitrate. When necessary, antibiotics 
were added to the medium at the following concentrations (pg/ml): 
ampicillin (Ap) 100 and tetracycline (Tc) 12.5 for E. coli; and carbeni- 
cillin (Cb) 150 and Tc 200 for P aeruginosa. Tc was not added for the 
cultivation to measure the fl-galactosidase activity. 

For oxygen-limiting condition, a 50-ml vial (70-ml total volume) 
containing 20 ml of the synthetic medium was used. After inoculating 
200 gl of overnight culture aerobically grown in LB medium, the vial 
was fitted with a butyl rubber septum and an aluminum seal. The air 
in the vial was replaced with argon by flushing the gas through a needle 
for 5 min and then oxygen gas was added into the vial to 2% (1 ml) by 
a gastight syringe. Cultivation was done with gentle shaking. 
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2.3. Transformation and mutation of P aeruginosa 
Introduction of DNA into P aeruginosa strains was carried out as 

follows: 0.2-ml overnight culture of P aeruginosa was inoculated into 
20 ml of LB medium. After about 2 h cultivation with vigorous shaking, 
cells were harvested by centrifugation, suspended in 10 ml of ice-cold 
buffer (100 mM MgCI2, 10 mM Tris-HC1, pH 7.5) and stored on ice 

0014-5793195/$9.50 © 1995 Federation of European Biochemical Societies. All rights reserved. 
SSDI  0014-5793(95)00885-3 



74 H. Arai et al./FEBS Letters 371 (1995) 73 76 

for 30 min. Then cells were recovered by centrifugation and resus- 
pended in 1 ml of the same buffer. To 100/11 of the cell suspension, 
appropriate amount of DNA solution was added and stored on ice for 
3 h. The suspension was heated at 45°C for 2 min, cooled on ice for 
2 min, and then transferred into 1 ml of medium. After incubating at 
37°C for 1 h for transformation by the broad-host-range plasmids or 
overnight for marker exchange mutagenesis, cells were plated onto LB 
plates containing antibiotics and the objective clones were selected. 

2.4. DNA manipulations and fS-galactosidase assay 
Recombinant gene techniques were carried out by standard methods 

[16] or that described previously [5]. The cells to measure the enzyme 
activity of fl-galactosidase, the gene product of lacZ, were incubated 
under the oxygen-limiting condition for 1618 h. After washing with 
Z buffer [16], the cells were resuspended in Z buffer and the fl-galacto- 
sidase activity was determined by the standard protocol [16]. 

3. Results and discussion 

3.1. Cloning and sequencing of  the downstream region of  the nor 
genes 

In our previous investigation, we identified the genes for 
nitric oxide reductase, norCB-ORF6, nearby the nir genes for 
dissimilatory nitrite reduction from P. aeruginosa [5]. To deter- 
mine the downstream structure of the nor genes, we cloned the 
region by using a 0,8-kb SphI-EcoRI fragment from pHA-E1 
(Fig. 1) as a hybridization probe. A BamHI digest of chromo- 
somal DNA from P aeruginosa PAO1 was shown to hybridize 
with the probe at about  8 kb in size (data not  shown). BamHI 
fragments around 8 kb were recovered from agarose gel and 
ligated to Charomid 9-36. Gene library was constructed in E. 
coli DH5. Three positive clones out of 650 colonies were ob- 
tained by colony hybridization. Two of the three clones carried 
the objective fragment (pHA-B1). 

The nucleotide sequence of the downstream region of ORF6  
was determined (Fig. 2). Two open reading frames, ORF7 and 
dnr, were identified in the opposite direction of the nor genes. 
ORF7 encode a protein of 64 amino acids. Molecular weight 
of the ORF7 gene product calculated from the translated se- 
quence was 7.3 kDa. No protein with an overall similarity to 
the deduced sequence of ORF7 was found in the protein data 
banks (SwissPlot release 30 and PIR release 43) by DDBJ 
FASTA e-mail server. There is a sequence resemble to the 
consensus binding motif  of F N R  (ANR) in the 5' region of 
ORF7,  suggesting that the gene is expressed under  the anaero- 
bic conditions as a single transcriptional unit. The dnr gene 

pHA-E1 probe 
pHA-B1 
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Fig. 1. Physical map of the nir and nor gene cluster from P. aeruginosa. 
Upper bars indicate the fragments cloned in the previous work (pHA- 
El) [5] and this study (pHA-B1), and a fragment used as a probe for 
Southern and colony hybridization analyses (probe). The arrows shows 
the sizes and transcriptional directions of the denitrification genes. 
Open box indicate the region where the nucleotide sequence was deter- 
mined in this work. The lower bars indicate the fragment used for the 
lacZ assay. These fragments were ligated into the HincII or SalI site of 
pUC119, removed by BamHI and HindIII digestion, and inserted into 
the respective sites of pQF50. The small arrows show the directions of 
the lacZ gene. Boxed BstPI site is where the tetracycline resistance gene 
is inserted to construct the dnr mutant, RM536. 
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Fig. 2. Nucleotide sequence of the dnr gene and its flanking region. 
Restriction sites are overlined and a ribosome-binding site is under- 
lined. Boxed sequence is a consensus binding motif of ANR. The nucle- 
otide sequence data has been deposited with GSDB, DDBJ, EMBL and 
NCBI nucleotide sequence databases with the accession number, 
D50019. 

encode a protein of 227 amino acids. Calculated molecular 
weight of the deduced gene product is approximately 26 kDa. 
Homology search with the protein data banks showed that the 
translated sequence of dnr had an overall similarity with the 
CRP/FNR-family  regulatory proteins. Those regulators had 
around 20% amino acid identity with the dnr gene product. 
D N R  does not  carry the cAMP-binding residues and the cyste- 
ine residues conserved in the CRP and F NR  type proteins. An 
evolutionary tree of D N R  and similar regulators are designated 
in Fig. 3. N N R  from Paracoccus denitrificans which was re- 
cently found to be encoded in the vicinity of the nir and nor 
genes [19] showed the highest identity (33.3%). 

3.2. Construction of  a dnr mutant o f  P. aeruginosa 
The 4.5-kb J(hoI fragment containing the dnr gene from 

pHA-B1 was cloned into the SalI site ofpUC119.  The dnr gene 
on the plasmid was disrupted by inserting the 1.4-kb EcoRI- 
AvaI fragment carrying the Tc-resistance gene (tet) from 
pBR322 into the unique BstPI site (Fig. 1). Cohesive ends of 
the fragments was blunted before ligation. The constructed 
plasmid, pHA536, was introduced into P. aeruginosa PAO1 
and a clone which shows Tc-resistant and Cb-sensitive pheno- 
type was selected as described previously [20]. The obtained 
mutant  was designated as strain RM536. Insertion of the tet 
gene on the chromosome of RM536 was confirmed by South- 
ern hybridization analysis (data not  shown). RM536 showed 
normal growth under the aerobic conditions. However, the 
mutan t  could not  grow under the anaerobic (denitrifying) con- 
ditions. Anaerobic growth of RM536 was completely restored 
by introducing the 875-bp ApaI-SphI fragment containing the 
dnr gene by a broad-host-range expression vector (data not  
shown). 

3.3. Promoter activities for the nir and nor genes in the dnr and 
anr mutant strains 

In our previous investigations, we found the ANR-binding  
motifs in the promoter regions of nirS and norCB [4,5]. nirQ, 
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which is divergently transcribed with nirS, was also suggested 
to be under the control of ANR [12]. Dependence of these 
denitrification genes on dnr or anr was examined by using lacZ 
as a reporter gene. The fragments containing the promoter 
regions for nirS, nirQ and norCB (Fig. 1) were ligated into a 
broad-host-range promoter probe vector, pQF50 [17] at the 
upstream of lacZ. The wild type (PAO1), dnr- (RM536) and 
anr- (PAO6261) strains were transformed by the constructed 
plasmids. The transformants were grown under the oxygen- 
limiting condition with 5 mM sodium nitrite and the activities 
of fl-galactosidase, the gene product of lacZ, were measured 
(Table 1). As a control, the activity for the tac promoter 
(BamHI fragment of pKK223-3 [21]) was also measured in the 
same way. Transcription from the tac promoter was not so 
affected by the dnr or anr mutation. However, the activities of 
the three denitrification promoters were considerably reduced 
by the mutation of dnr or anr. These results clearly indicated 
that the second crplfnr-related regulatory gene, dnr, is necessary 
for the expression of the nir and nor genes. It is also the first 
finding that anr is required for the transcription of the nitric 
oxide reductase gene (norCB). 

3.4. Conclusions 
It has been reported that a regulator, ANR, is required both 

for denitrification and anaerobic arginine catabolism of P 
aeruginosa [10-12,22,23]. Recent study also confirmed that the 
activation of the entire denitrification pathway is under the 
control of ANR [15]. ANR is highly homologous with FNR of 
E. coli and has conserved cysteine residues which are shown to 
be necessary for sensing anoxia [1]. Thus, ANR is thought to 
be involved in the anoxic regulation of the denitrification genes. 
In addition to the oxygen limitation, the presence of respiratory 
substrates for denitrification such as nitrate and nitrite is re- 
quired for the expression of denitrification enzymes [24~27]. 
However, the mechanism to sense these nitrogenous oxides has 
not been clarified. In this report, we found the second crplfnr- 
related regulatory gene, dnr, from P. aeruginosa. Both of the 
two regulatory genes, dnr and anr, were indicated to be neces- 
sary for the expression of the nir and nor genes on the stage of 
transcription. DNR lacks the N-terminal cysteine cluster which 
may participate in sensing the intracellular redox potential. 
There is a possibility that DNR activate the expression of the 
denitrification genes by the presence of nitrogenous oxide. Re- 
cently, Van Spanning et al. found the gene similar to dnr from 
P denitrificans and designated nnr [19]. They showed by heine 
staining analyses that the gene is necessary for the expression 
of functional nitrite reductase and nitric oxide reductase en- 
zymes. The transcription of the genes for these reductases may 

Table 1 
Both of the dnr and anr genes are required for the transcription of the 
denitrification genes of P aeruginosa 

Strain (genotype) fl-Galactosidase activity for promoters a 

nirS nirQ norCB tac 

PAO1 (wild type) 2.4 0.8 7.6 4.2 
RM536 (dnr) O. 1 - - 3.9 
PAO6261 (ant) 0.1 - 0.1 4.3 

"Specific activity of fl-galactosidase is expressed in Miller kilo-units. 
The data are mean values from three or four independent experiments. 
' - '  indicate the mean value is lower than 50 Miller units. 
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Fig. 3. Evolutionary tree of the CRP/FNR-related regulatory proteins. 
The abbreviations used for the genera are: E., Eseheriehia; H., Haemo- 
philus; P., Pseudomonas; B., Bordetella; Br., Bradyrhizobium; R., 
Rhizobium; Pa., Paracoeeus. Anabaena and Synechocystis are represent 
sp. PCC7120 and sp. PCC6803, respectively. Regulators from P aeru- 
ginosa are boxed. The tree was generated by the program of the GENE- 
TYX package (Software Development, Tokyo, Japan) using UPGMA 
method. 

be regulated by the nnr gene product. The anoxic regulator 
correspond to FNR from E. coli or ANR from P aeruginosa 
have not been identified from P denitrificans. The ANR-like 
regulator, FnrA, was found from P stutzeri, but FnrA was not 
necessary for the expression of the denitrification enzymes [13]. 
The CRP/FNR-related regulator which regulate the expression 
of the denitrification genes have not yet been found from the 
bacterium. The finding reported here is the first example of the 
involvement of two CRP/FNR-related regulators in denitrifica- 
tion in one strain. We are now investigating the effects of the 
dnr mutation on the expression of the other denitrification 
genes and the genes for anaerobic arginine catabolism. 
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