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Abstract The vanadium-dependent haloperoxidase from the 
seaweed Corallina officinalis has been purified to homogeneity 
and crystallised. The protein is reported to be a hexamer of 
12 × 64,000 Da, contains no haem, and is dependent on vanadium 
for activity. The crystals are grown from polyethylene glycol 
(PEG) 6,000 and 0.4 M potassium chloride. They are stable and 
diffract to better than 2 A resolution. They are of a cubic space 
group 123 (or 1213) with cell dimensions a = b = c = 310 A. 
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been carried out on the monomeric  enzyme from the phaeo- 
phyte Ascophyllum nodosum [13]. The crystals were in the mon- 
oclinic space group P21. Here we report the crystallisation of  
the C. (~[fl'cinalis enzyme. Structural studies will further our 
understanding of  the multimeric arrangements o f  the protein 
subunits and the role of  vanadium in the catalytic action. One 
property of  the vanadium cofactor in haloperoxidases is that 
it can be removed at low pH in the presence of  EDTA, render- 
ing the enzyme inactive. Incubation of  the enzyme at neutral 
pH with vanadate restores activity. This has led to the sugges- 
tion, which is confirmed by spectroscopic studies, that the vana- 
dium is in the valance state 5+ (3d °) [14]. 

1. Introduction 2. Materials and methods 

Vanadium-dependent  haloperoxidases are able to utilise hy- 
drogen peroxide to oxidise halides (C1 , Br-, I-) and to haloge- 
nate suitable organic substrates [1]. They are thought to be 
responsible for the product ion of  a variety of  halometabolites 
identified in marine algae, including environmentally signifi- 
cant volatile halocarbons such as b romoform [2]. Vanadium- 
dependent haloperoxidase was first identified in the brown 
macroalga Ascophylum nodosum [3]. Subsequently, vanadium- 
dependent haloperoxidases were isolated and partially purified 
from the red macroalgae Ceramium rubrum [4] and Corallina 
oJficinalis [5]. The native enzyme is oligomeric with a Mr of  
740,000 and a denatured subunit size of  64 kDa  supporting the 
dodecameric structure of  two superimposed hexagonal rings 
presented for an apparently similar enzyme from Corallina 
pilulifera [6], al though vanadium dependence for this enzyme 
was not examined. Extracellular haloperoxidase from Curvu- 
laria inaequalis also required activation by vanadium [7] and 
had previously demonstrated high stability to oxidised halide 
HOCI,  a putative halogenation reaction product [8]. A vana- 
dium-dependent  haloperoxidase has also been isolated from the 
lichen Xanthoria parientina [9]. The use of  the C officinalis 
enzyme for biotransformations has been demonstrated by its 
ability to carry out  regiospecific halogenations of  cinnamyl 
substrates [ 10]. Regiospecific halogenation and typical high sta- 
bility towards oxidants, organic solvents [11] and temperature 
[12] make vanadium-dependent  haloperoxidases interesting 
catalysts for use in future biotransformations.  

Crystallisation of  vanadium-dependent  haloperoxidase has 
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2.1. Isolation of haloperoxidase 
Haloperoxidase was extracted by initial maceration of 450 g of 

C officinalis collected from the Devon shoreline. This was carried out 
by grinding fresh fronds with acid-washed sand in buffer A (50 mM 
Tris-H2SO4), pH 8.0. All purification steps were carried out at 4°C. The 
crude protein extract was made 40% saturated with respect to enzyme- 
grade ammonium sulphate. After stirring for 30 min the extract was 
centrifuged at 15,000 rpm for 30 min and the resulting precipitate was 
discarded. Ammonium sulphate was added to the supernatant to 60% 
saturation, centrifuged as above and the supernatant discarded. The 
precipitate was dissolved in buffer A, pH 8.0, and dialysed overnight 
against the same buffer before being loaded onto a DEAE-cellulose 
column (Whatmann; 2.5 x 25 cm) equilibrated with the same buffer. 
Protein was eluted with a linear gradient of 0~1.0 M potassium bro- 
mide. Active fractions were pooled and made to 20% (w/v) ammonium 
sulphate. The enzyme solution was loaded onto a phenyl-Sepharose 
CL-4B column (Pharmacia; 5 x 5 cm) equilibrated with 20% (w/v) am- 
monium sulphate in buffer A, pH 8.0. Protein was eluted with a nega- 
tive linear gradient from 20% (w/v) to 0% ammonium sulphate. Frac- 
tions rich in haloperoxidase were pooled and concentrated by precipita- 
tion with 80% ammonium sulphate. The enzyme was redissolved in a 
minimal volume of buffer A, pH 8.0, and loaded onto a Sephacryl-S400 
(Pharmacia) gel-filtration column (1 x 40 cm). Fractions rich in halo- 
peroxidase activity were collected and applied to a Sephacryl S-1000HR 
column (1 x25 cm). Active fractions were concentrated using 80% 
ammonium sulphate and dialysed overnight against 1 mM sodium 
orthovanadate and buffer A, pH 6.8. 

2.2. Haloperoxidase activity assays 
Haloperoxidase activity was assayed by the monochlorodimedone 

assay. One unit of enzyme activity is defined as the amount of enzyme 
which converts 1 ,umol of monochlorodimedone to products in 1 rain 
at ambient temperature. MES buffer, pH 6.0, containing 0.1 mM mon- 
ochlorodimedone, 1 mM hydrogen peroxide and 200 mM potassium 
bromide, was mixed in a 1 ml quartz curvette. After addition of enzyme 
the absorbance decrease at 290 nm was recorded spectrophotometri- 
cally using the extinction coefficient of monochlorodimedone of 
19.9 mM -l.cm ~ [16]. 
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2.3. Stability studies 
The enzyme was heated to temperatures between 70 and 90°C for 15 

min without 10 mM sodium orthovanadate and activity checked by the 
monochlorodimedone assay. The enzyme was deactivated by dialysis 
against 50 mm citrate buffer, pH 4.0, 10 mM EDTA. The long-term 
effect of chaotropic agents upon haloperoxidase activity was deter- 
mined by incubation of the enzyme with 0-80% v/v of ethanol, pro- 
panol-2-ol and acetone for 21 days at 4°C. The remaining activity was 
checked using the monochlorodimedone assay described above. The 
effect of pH on the enzyme was tested by incubation at pH values 
ranging from 4 to 10 for 1 month at 4°C. The resultant activity was 
tested as described above. 

2.4. Haloperoxidase crystallisation 
Protein was concentrated on Amicon Centrion l0 microconcentra- 

tors to a concentration of 4.2 mg.ml ~. Crystals were grown at 18°C 
by vapour-phase diffusion using the hanging-drop technique. The pro- 
tein concentration was 4.2 mg. ml ~ in a solution containing buffer A, 
pH 6.8, 0.4 M potassium chloride and 5% (w/v) PEG 6000. The hanging 
drops were suspended in sealed compartments above a 25% (w/v) solu- 
tion of PEG 6000 containing 0.4 M potassium chloride. The crystals 
which grew in 1-2 weeks were harvested into a mother liquor containing 
30% PEG 6,000 and 1 M potassium chloride. 

2.5. X-ray data collection 
Data were collected on the Synchrotron beamline X 11 at the EMBL 

Hamburg outstation at a wavelength of 0.92 A. Native crystals diffract 
to beyond 2.0 A resolution. 50 ° of data, to a resolution of 3.15 A were 
collected in 0.5 ° frames and processed with the MOSFLM software 
[17]. 
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Fig. 1. Graph showing the percentage of activity remaining after stor- 
age of the haloperoxidase after incubation at pH values 4-10 for 
1 month at 4°C. 

Fig. 2. Crystals of vanadium-dependent haloperoxidase from Corallina 
offT"cinalis, grown from PEG 6,000. Crystal dimensions were typically 
0.3 x 0.3 x 0.3 mm. 

3. Results and discussion 

Protein  prepared  as described in section 2 ran as a single 
band  on  SDS/PAGE with a molecular  weight of  64,000 Da [15]. 
The  stabili ty studies showed tha t  the enzyme was stable to high 
temperatures ,  with reversible activity loss at a t empea ture  of  
90°C. Loss of  haloperoxidase  activity at  90°C followed by 
react ivat ion at  20°C was consis tent  with the results of  Sheffield 
et al. [12]. In the presence of  excess sodium o r t h o v a n a d a t e  (10 
mM),  activity loss was not  observed at 80°C. When  the enzyme 
was deact ivated by dialysis against  50 m M  citrate buffer at pH 
4 in the presence of  10 m M  EDTA the activity was fully re- 
s tored by v a n a d i u m  or thovanada te .  The long- term effect of  
s torage of  the enzyme in chao t rop ic  agents is shown in Table 
1. Haloperoxidase  activity was unaffected by storage at  4°C in 
40% (v/v) e thanol  and  was increased by 28% when incuba ted  
for 1 m o n t h  40% (v/v) propan-2-ol .  

Vanad ium-dependen t  haloperoxidase  could chlor ina te  mon-  
och lo rod imendone  with a pH o p t i m u m  of  4.5. The enzyme was 
stable for 1 m o n t h  at  pH values ranging  from 5 to 10 (Fig. 1). 
The  stability of  this enzyme to temperature ,  solvents and  pH 
makes  it ideally suited for use industr ial ly in large scale bi- 
o t r ans fo rma t ion  reactions.  

Cubic crystals grew from P E G  6,000 in abou t  1 2 weeks and  

Table 1 
Long-term effect of chaotropic agents upon haloperoxidase activity 

Solvent % (v/v) Percentage of activity remaining 

Ethanol Propan-2-ol Acetone 

0 100 100 100 
20 107 132 59 
40 104 128 57 
60 34 II 0 
80 34 0 0 

Enzyme was incubated with an appropriate amount of solvent lk~r 21 
days at 4°C. The values represent the amount ofhaloperoxidase activity 
remaining. 
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Fig. 3. x = 90 section of the self-rotation function calculated with the 
CCP4 program POLARRFN. Data from 10.5 A were used together 
with an outer radius for Patterson integration of 25 A. The calculation 
has been performed such that crystallographic symmetry results in a 
peak height of 100 units. The plot is contoured from 10 to 100 in steps 
of 10. The non-crystallographic 4-fold axis indicates that the space 
group is pseudo •432 (or 14132), as is also indicated by the reasonable 
merging statistics in this space group (see text). 

were typically 0.3 × 0.3 x 0.3 mm in dimension (Fig. 2). The 
crystals diffract to beyond 2.5/k resolution and are in the cubic 
space group 123 (or I2t3) with cell dimensions a = b = c = 310 
,A,. Taking into account the molecular weight of  the protein 
(64,000 Da) and the asymmetric unit volume of  1,205,254 A 3, 
it is possible that the asymmetric unit contains 6, 7, 8 or 9 
molecules with packing densities of  3.1, 2.7, 2.3 or 2.1 A3/Da. 
The final data contained 519,194 observations of  84,368 unique 
reflections. Only 146 experimental observations were rejected 
during the data reduction procedure. The final data are 98% 
complete to 3.15 A resolution, with an Rmerg e of  0.065, and a 
mean multiplicity of  observation of  6.1 observations/reflection. 
The crystals diffract extremely well, considering the asymmetric 
unit volume, which suggests that the lower solvent contents are 
more likely. Inspection of  the native diffraction amplitudes or 
the self-rotation function (Fig. 3) indicates the presence of  a 
strong non-crystallographic 4-fold axis. The crystals therefore 

have a pseudo space group of  I432 or 14132. Indeed the diffrac- 
tion data can be reduced in this space group to give a n  Rmerg e 

of only 0.12, but this requires that 21% of the experimental 
observations are rejected compared to 0.028%. With the pres- 
ent information, it is not clear how the proposed molecular 
structure of  two stacks of  6 molecules can be related to the 
observed crystallographic and non-crystallographic symmetry. 
It is hoped that further X-ray studies will help to solve this 
problem. Information on the structure of  the enzyme will be of  
interest in understanding the role of  vanadium in the catalytic 
mechanism. The potential to modify the substrate specificity of  
the enzyme by site-directed mutagenesis will extend the use of  
vanadium haloperoxidase in large scale biotransformation re- 
actions. 
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