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Abstract Site-directed mutagenesis studies of the sareoplasmic 
reticulum Ca2+-ATPase have pinpointed five amino acid residues 
that are essential to C a  2+ occlusion, and these residues have been 
assigned to different parts of a Ca z+ binding pocket with channel- 
like structure. Three of the homologous Na+,K+-ATPase residues 
have been shown to be important for binding of cytoplasmic Na ÷ 
at transport sites. In addition, three of the above mentioned Ca 2+- 
ATPase residues appear to participate in the countertransport of 
H ÷, and two of the Na+,K+-ATPase residues to participate in the 
countertransport of K +. Residues involved in energy transducing 
conformational changes have also been identified by mutagenesis. 
In the Ca2+-ATPase, ATP hydrolysis is uncoupled from Ca 2+ 
transport following mutation of a tyrosine residue located at the 
top of transmembrane segment MS. This tyrosine, present also 
in the Na+,K+-ATPase, may play a critical role in closing the gate 
to a transmembrane channel. 

Key words: P-type ATPase; Calcium; Sodium; Potassium; Ion 
pump; Ion channel 

1. Introduction 

Ca2+-ATPases and Na+,K+-ATPases of P-type mediate ac- 
tive ion transport coupled to ATP hydrolysis through forma- 
tion and breakdown of a phosphoryl aspartyl enzyme interme- 
diate existing in at least two major conformational states El P 
and E2P (Fig. 1). The Ca2+-ATPase of sarcoplasmic reticu- 
lum** is composed of a single 110 kDa peptide chain [1] which 
is homologous to the c~-subunit of the c~fl-protomer of Na+,K +- 
ATPase. A common structural model has been proposed for 
the Ca2+-ATPase peptide and the Na÷,K+-ATPase ~-subunit, 
in which the cytoplasmic subdomains are joined through a 
'stalk' region to a membrane buried part consisting of 8 or 10 
transmembrane segments ([2,3] and Fig. 2). 

Modern molecular biology has made it feasible to examine 
the roles of individual amino acid residues by site-directed 
mutagenesis. To date, more than 200 different point mutants 

*Corresponding author. Fax: (45) (86) 12 90 65. 

Abbreviations: CRATE fl,T-bidentate chromium(Ill) complex of ATP; 
Ko.5, concentration giving half maximal activation; M1-M10, putative 
transmembrane segments numbered from the NH2-terminal end of the 
peptide; wild type, the non-mutated form of the exogenous enzyme 
expressed following transfection. 

**The Ca2+-ATPases treated in this article are those of sarco(endo)- 
plasmic reticulum, not the plasma membrane Ca2+-ATPases. 

of the sarcoplasmic reticulum Ca2+-ATPase have been ex- 
pressed transiently in mammalian cell lines and analysed for 
function by a panel of assays comprising measurement of the 
rates of Ca 2÷ uptake in the microsomal vesicles and ATP hy- 
drolysis, phosphorylation from ATP or P~, as well as Ca 2+ 
occlusion stabilized with CrATP [4-31]. The mutagenesis ex- 
periments have pinpointed 40 50 functionally important amino 
acid residues of the CaZ+-ATPase, and it has been possible to 
assign the functions of these residues to specific partial reaction 
steps as indicated in Fig. 2. 

Similar site-directed mutagenesis studies of the Na+,K ÷- 
ATPase are rapidly progressing [32-41]. Mammalian cell lines 
can also be used for expression of the Na+,K+-ATPase cDNA, 
albeit with the complication that such cells contain considerable 
amounts of endogenous Na+,K+-ATPase. To circumvent this 
problem, non-rodent cell lines are transfected with cDNA en- 
coding the ouabain-resistant rat Na+,K+-ATPase ~l-isoform, 
so that stable transfectants can be selected in the presence of 
ouabain which inhibits only the endogenous non-rodent 
Na+,K+-ATPase [32,34]. 

The mutagenesis studies have made it clear that the cation 
binding structure is located in the transmembrane sector of the 
protein well separated from the catalytic ATP binding and 
phosphorylation site in the cytoplasmic portion. The energy 
coupling between scalar and vectorial reactions must therefore 
require long-distance communication between the cytoplasmic 
and transmembrane protein segments. The present review sum- 
marizes information on the residues involved in Ca 2+ binding 
in the Ca2+-ATPase, and discusses this in relation to the recent 
work on Na+,K+-ATPase mutants. In addition we will focus on 
residues involved in the coupling of ATP hydrolysis to ion 
transport. The mutagenesis data add to the growing evidence 
that ion pumps can be regarded as channel-like structures 
equipped with energy dependent locks and gate controls. 

2. The Ca 2+ binding structure of the Ca2+-ATPase 

The two calcium ions to be translocated are initially recog- 
nized and bound at cytoplasmically facing enzyme sites display- 
ing high apparent affinity with a K0s near 1 /IM. Simultane- 
ously with the binding, or immediately following this process, 
the two calcium ions are transferred into an occluded state with 
no access to the aqueous medium on either side of the mem- 
brane [42-44]. When both calcium ions are bound, the enzyme 
can be phosphorylated from ATP [45] and is thereby activated 
for transport of the bound Ca 2+ (Fig. 1). As indicated in Fig. 
2 (open circles), a number of mutations to residues at or near 
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Fig. 1. Simplified reaction cycles of the Ca 2+- and Na+,K+-ATPases 
showing binding and dissociation steps for the cations and the phos- 
phoryl group, as well as transitions between different conformational 
states of the enzymes. The cytoplasmic side of the membrane is upward 
and the extracytoplasmic side downward. Brackets indicate occluded 
states of the cation binding sites. E1 indicates the form with chemical 
specificity for reaction with ATP/ADR E2 indicates the form with 
chemical specificity for reaction with P~/H20. Unlabelled forms are 
those that are difficult to stabilize and therefore not straightforward to 
define experimentally. A tentative H÷-countertransport limb is shown 
for the Ca2+-ATPase according to recent findings (n = 2 or 3). Dashed 
lines indicate alternative reaction pathways that may be used under 
certain conditions. 

the t ransmembrane sector reduced the apparent affinity for 
Ca 2+ measured by Ca 2+ titration of  Ca 2+ transport or phospho- 
rylation from ATE These residues must in some way be impor- 
tant for the binding of  cytoplasmic Ca 2÷ at the high-affinity 
sites. A more direct measurement  of  the function of  the Ca 2+ 
sites is obtained by studying Ca 2+ occlusion in the presence of  
the non-phosphorylat ing substrate analog CRATE which stabi- 
lizes the occluded state of  the wild-type enzyme [18,44]. Five 
residues with oxygen containing side chains, Glu 3°9, Glu TM, 

Asn 796, Thr  799, and Asp 8°°, located in t ransmembrane segments 
M4, M5, and M6, appear to have a unique importance, since 
it was impossible to alter one of  these residues without a com- 
plete loss of  the ability to occlude Ca 2+ as measured at Ca 2~ 
concentrations up to 10 m M  [18,27,29]. The side chain oxygens 
o f  these residues are thus strong candidates for Ca 2÷ ligands in 
the occluded state. 

An important  property of  the Ca 2+ binding sites in the state 

with access from the cytoplasmic side is that the two calcium 
ions bind and dissociate in an ordered (consecutive) manner 
[42 46]. The structural correlate is thought  to be a single-file 
arrangement of  the sites, one on top of  the other [43], as shown 
in Fig. 3. It has been of  major interest to try by mutagenesis 
to distinguish between the respective amino acid residues pro- 
viding side chains for coordinat ion of  Ca 2+ at the two sites. To 
this end, it has been very useful to compare the different mu- 
tants with respect to their Ca 2+ dependencies of  phosphoryla- 
tion from ATP and P~ [16,17,27,29]. The studies of  Ca 2+ inhibi- 
tion of  'backdoor '  phosphorylat ion from P~ complement the 
studies of  Ca 2+ activation of  phosphorylat ion from ATP be- 
cause the binding of  only the first calcium ion in the sequence 
is sufficient to prevent phosphorylat ion from P~ [46], whereas 
phosphorylat ion from ATP requires that both calcium sites are 
occupied [45]. Three classes of  'Ca  2÷ site mutants '  were dis- 
tinguished. In mutants Glu3°9--~Gln, Glu3°9---yLys, and 
Asn796---~Ala, Ca 2÷ inhibited phosphorylat ion from Pi with 
almost the same apparent affinity as in the wild type [16,17,27], 
indicating that the particular site binding the first calcium ion 
in the sequence (the 'deeper '  site) was functioning normally 
despite the inability of  these mutants to occlude Ca 2+ and phos- 
phorylate from ATP at Ca 2÷ concentrations up to 10 mM. By 
contrast, mutations to residues Glu TM and Thr  799 reduced the 
apparent Ca 2+ affinities measured in the two phosphorylat ion 
assays to the same extent, suggesting that the deeper site was 
disturbed [17,27,29]. Finally, the Asp8°°--+Asn mutat ion ap- 
peared to hit both Ca 2+ sites since the apparent Ca 2+ affinity 
was reduced in either phosphorylat ion assay but to different 
extents [17,27]. The phosphorylat ion data have led us to assign 
the residues with oxygen containing side chains to the two Ca 2÷ 
sites in the E1 form as shown in Fig. 3 (left side). The fact that 
at least one calcium ion was bound with normal affinity but not 
occluded in mutants with alterations to Glu 3°9 and Asn 796 adds 
further evidence to the single-file arrangement of  the binding 
sites since it appears that the superficial Ca 2+ site must be 
occupied and its gate closed for occlusion of  the deeper site to 
o c c u r .  

3. Cytoplasmically facing Na ÷ sites in Na+,K+-ATPase 

The residues Glu 3°9, Glu 771, Asn 796, Thr  799, and Asp 8°° shown 

to be important  for Ca 2+ occlusion in the CaZ+-ATPase have 
homologous counterparts Glu 329, Glu 781, Asp s°6, Thr  8°9, and 
Asp sm in the Na+,K+-ATPase [47] (numbering referring to the 
~ l - i soform of  rat). Mutants  with alterations to these residues 
have been examined using ouabain selection methodology. 
While mutants Glu329---~Ala, Glu329 --) Asp, GluVSl----)Leu, 
AspS°6-+Leu, AspS°6---~Asn, AspS°6--)Glu, Asp81°---~Asn, and 

AspSm-~Leu were unable to confer ouabain resis- 
tance to the cells and therefore inactive [39,40], mutat ion 
Glu 329--) Leu [39] as well as mutations GIu 329~GIn, 
Glu78~---~Ala, and ThrS°9---~Ala [38,40] were compatible with 
cell growth. The functional analysis of  the latter mutants sum- 
marized in Table 1 demonstrated a reduction of  the apparent 
affinity for cytoplasmic Na  + in accordance with a role for these 
residues in Na  + binding/occlusion similar to the role played by 
their homologous counterparts  in the Ca2+-ATPase [38,40]. O1- 
igomycin, known to promote  occlusion of  Na  ÷, was moreover  
shown to be required to obtain complete phosphorylat ion of  
the Glu TM ---~Ala mutant  from ATP [40]. 
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Fig. 2. Model of the topology of the sarcoplasmic reticulum Ca2+-ATPase with indication of the residues that have been studied by site-directed 
mutagenesis. Ten putative transmembrane segments (M1-MI0) are shown [2,3]. The functionally important amino acid residues are indicated 
according to the single-letter code inside a symbol showing the functional class to which the mutants with replacement of the indicated residue belong. 
This assignment is based on studies in [4-31] (and unpublished). Open circles, mutants unable to occlude Ca 2÷ or displaying at least 3-fold reduction 
in apparent Ca 2+ affinity in transport or phosphorylation assay; triangles pointing upwards, mutants that are unable to phosphorylate with ATP 
as well as with P, as substrate; squares, mutants in which the transition from E 1P to E2P is blocked; diamonds, mutants in which the dephosphorylation 
of E2P is blocked; triangle pointing downwards, the T y r  763 ----) Gly mutant in which ATP hydrolysis is uncoupled from Ca 2÷ transport. The filled circles 
indicate mutants displaying normal Ca 2÷ affinity and a maximum turnover rate above 20% that of the wild type. Double labelling of residues indicate 
either that two partial reaction steps are affected by the same mutation or that different substituents elicit different effects. Sites for binding of 
phospholamban [26] and for regulatory serine phosphorylation of the SERCA2 isoform [30] are also indicated, as is the M3 region shown to be 
essential to thapsigargin binding [51]. 

It is no tewor thy  tha t  subs t i tu t ion  of  Glu  329 in Na+,K+-ATP - 
ase with ei ther  g lu tamine  or  leucine led to funct ional  pumps,  
whereas subs t i tu t ion  with ei ther  a lanine or aspar t ic  acid, bo th  
of  which have smaller  side chains,  led to inactive pumps  [38~,0]. 
The  requi rement  for  a bulky side chain  would be explained if 
G lu  329 were par t  of  the gate at  the en t rance  to the occlusion 
pocket  as depicted for the homologous  residue Glu  3°9 of  the 
CaZ+-ATPase in Fig. 3. Such a role for Glu  329 seems to be 
suppor ted  by studies of  the ATP and  pH dependencies  of  
Na+,K÷-ATPase activity of  the Glu329----)Gln mutan t ,  which 
have indicated tha t  par t ia l  react ion steps leading to deocclusion 

at the cytoplasmic surface are accelerated in this m u t a n t  rela- 
tive to the wild type [38]. 

Con t r a ry  to the s i tuat ion with Glu  329, replacement  of  Glu  TM 

in Na+,K+-ATPase with leucine led to inact ivat ion [39], while 
the Glu  TM ---~Ala m u t a n t  was compat ib le  with cell g rowth  [40]. 
This  seems to be consis tent  with a model  for the occlusion 
pocket  of  the Na+,K÷-ATPase bear ing resemblance to tha t  
shown for CaZ+-ATPase in Fig. 3, since Glu  TM is homologous  
to Glu  TM in CaZ÷-ATPase. With  Glu  TM con t r ibu t ing  its side 
chain  to the deeper  par t  of  the occlusion pocket  in Na+,K ÷- 
ATPase it would be unlikely tha t  a large subs t i tu ten t  such as 
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Fig. 3. Hypothesis for the assignment of residues to Ca 2+ occlusion sites 
and H + binding sites in the E1 (left) and E2P (right) forms, respectively. 
The cytoplasmic surface is at top. The question mark indicates that 
Glu '~°8 is less crucial to Ca 2+ occlusion compared with the other residues 
with oxygen containing side chains. Glu 3°9 and Tyr v63 may be part of 
different gating mechanisms. See text for further explanation. Note also 
that it would be impossible for the three residues Asn 796, Thr 799, and 
Asp 8°°, all belonging to the M6 segment, to donate ligands to the two 
Ca 2+ sites in the order suggested for the E1 form and at the same time 
be part of an ~-helix [27]. 

leucine could be accommodated with preservation of  cation 
occlusion, while it seems plausible that the smaller alanine sub- 
stituent would be compatible with ion binding, albeit with the 
reduced affinity apparent from Table 1. 

4. Counterions 

The Na+,K+-ATPase exchanges 2 K ÷ for 3 Na  ÷. It has re- 
cently been demonstrated that the CaZ+-ATPase countertrans- 
ports H ÷ (or H30 +) with a stoichiometry of  2 or  3 H + exchanged 
for 2 Ca 2÷ [48,49]. Assuming that the latter reaction occurs by 
the same mechanism as K + transport  by the Na+,K+-ATPase, 
the protons or hydroxonium ions would enter the reaction cycle 
by binding to extracytoplasmically facing sites on the E2P inter- 
mediate (Fig. 1). We have found several CaZ+-ATPase mutants 
in which the dephosphorylat ion of  the E2P intermediate is 
blocked at neutral pH ( 'E2P mutants '  in Fig. 2), and some of 
these are identical to the mutants in which Ca 2+ occlusion is 
defective. Hence, at pH 7.0 the rate of  dephosphorylat ion of  
E2P formed by the mutants  Glu3°9--)Gln, Glu771-+Gln, 
Glu TM--~AIa ,  and Asn796--~Ala is at least 10-fold 
lower than that corresponding to wild-type Ca2+-ATPase 
[16,17,27,29]. The residues Glu 3°9, Glu 77~, and Asn 79~' are, there- 
fore, candidate donators  of  oxygens for the binding of  H + (o1" 
H3 O+) to be countertransported (Fig. 3, right side). To test the 
hypothesis that the side chain of  Glu TM participates in proton 
countertransport ,  Glu TM was replaced with lysine, expecting 
that this substitution would mimick the binding of  positive 
charge corresponding to two protons near the free carboxylate 
group of  Glu TM. Indeed, it was found that the dephosphoryla- 
tion of  E2P occurred rapidly in the Glu771--~ Lys mutant  [29]. 

The studies of  Na+,K+-ATPase mutants  have indicated that 
the residues G I u  329 and Glu TM homologous to G I u  309 and Glu 77~ 
in Ca2+-ATPase are quite important  determinants of  apparent 
K + affinity at the extracellularly facing sites, whereas this seems 
not to be the case for Thr  8°9, which appears to be involved 
predominantly in determination of  Na  + affinity (Table 1). Cor- 
respondingly, the homologous  Ca2+-ATPase residue Thr 7'~9, 
critical to C a  2÷ occlusion, has been shown not to be important  
for the dephosphorylat ion of  E2P [27]. The results are consis- 

tent with a consecutive mechanism of  ion pumping in which the 
ions taken up from the cytoplasm (Ca 2+ or Na ÷) are released 
on the extracytoplasmic side prior to the binding of  the coun- 
terions (H + or K +) at sites composed of  some of  the same 
residues (including Glu3°9/Glu329 and GluYVl/GluY81, but not  
ThrV99/Thr 8°9) that bind the cytoplasmic ions. The Na+,K *- 
ATPase residue Glu 781 may play a crucial role in the discrimina- 
tion between Na + and K + at the extracellularly facing sites, 
since in the Glu781~Ala mutant  Na + was able to activate 
dephosphorylat ion and support high ATPase activity in the 
absence of  K + [40]. 

5. Other residues of importance for cation affinity 

Because the above discussed residues with oxygen containing 
side chains in t ransmembrane segments M4, M5, and M6 are 
conserved between the Ca2÷-ATPase and the Na+,K+-ATPase, 
these residues are not  the ones determining the preference of  
the Ca2+-ATPase for Ca 2+ over Na +. 

The Ca2+-ATPase residue Glu 9°8 located in the putative 
t ransmembrane segment M8 is unique to the Ca2+-ATPase, a 
valine occupying the homologous position in Na+,K+-ATPase 
[47]. Substitution of  Glu 9°s with alanine reduced the apparent 
affinity for Ca 2+ more than 100-fold as measured in the phos- 
phorylation assays [5,27], but Ca 2+ occlusion was not disturbed 
even at a Ca 2+ concentrat ion as low as 10 p M  [27], and at high 
Ca ?+ concentrations in the mill imolar range the Glug°8--~Ala 
mutant  transports Ca 2+ at a significant rate (J.P. Andersen, 
unpublished). Glu 9°8 might be involved in the initial recognition 
of  Ca -~+ without participating in the coordinat ion of  Ca 2+ in the 
occluded state. 

Steric factors owing to the constraints imposed by hydropho- 
bic side chains are likely to be important  for the specific cation 
selectivity. Mutagenesis studies of  Phe 76° and Gly 77° of  the Ca 2+- 
ATPase have indicated that these residues contribute more 
than 100-fold to the apparent affinities of  the superficial and 
deep Ca 2+ sites, respectively [15,28,31]. The respective residues 
at the homologous positions in Na+,K+-ATPase are serine and 
proline [47]. 

Experiments with chimeric fusion proteins between Na+,K +- 
ATPase and CaZ+-ATPase have demonstrated that the large 
cytoplasmic loop between M4 and M5 of the Na+,K+-ATPase 
can be substituted for that of  the Ca2+-ATPase without any 
effect on apparent Ca 2÷ affinity [50]. On the other hand, when 
the t ransmembrane segment M3 of Na+,K+-ATPase was substi- 

Table l 
Apparent cation affinities of Na+,K÷-ATPase mutants 

Mutants Na+,K+-ATPase" 

Na ÷ K + 

Phosphorylation b 

Na + 

Ko. 5 (mM) 
Wild type 7.1 1.0 0.8 
Glu329--~ Gin 13.8 4.8 2.6 ~ 
Glu 7sl --~ Ala 35.6 2.8 6.5 
ThrS°9---) Ala 29.3 1.4 5.0 

"K05 values determined by titration of Na+,K+-ATPase activity with 
Na + and K +, respectively. 
b K05 values determined by Na + titration of phosphorylation from ATP 
in the absence of K +. 
c B. Vilsen, unpublished data; all other data were reproduced from 
[38,40]. 
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tuted for that of Ca2+-ATPase, the apparent affinity for Ca 2+ 
as activator of the phosphorylation reaction with ATP was 
found to be reduced more than 100-fold [51]. M3 is not well 
conserved among P-type ATPases of different cation specific- 
ity, and in studies of several Ca2+-ATPase/Na+,K+-ATPase chi- 
meras it was demonstrated that M3 is essential to the specific 
inhibition of the Ca2+-ATPase by thapsigargin, which behaves 
like a Ca -'+ antagonist [51]. Other studies of chimeras have 
implicated the NH2-terminal 69 amino acid residues of the 
Na*,K+-ATPase as a 'Na+-sensor ' [52]. 

6. Coupling of ATP hydrolysis to ion translocation 

The conversion of the ADP-sensitive ('high energy') Ca 2+- 
occluded E1P phosphoenzyme intermediate into the ADP-in- 
sensitive ('low energy') E2P phosphoenzyme intermediate of 
the Ca2+-ATPase can be prevented or slowed down by single 
mutations, with resulting loss of Ca 2+ transport as well as ATP 
hydrolysis, but with retention of the ability to phosphorylate 
from ATP and form E1P in a Ca 2+ dependent reaction 
[8,9,11,13,14,20,24]. Mutations giving rise to this phenotype 
( 'EIP mutants'  in Fig. 2) are located in the stalk sector connect- 
ing transmembrane segment M4 with the larger cytoplasmic 
domain and in the smaller cytoplasmic loop (the 'fl-domain' 
between transmembrane segments M2 and M3), parts of which 
are highly conserved among the P-type ATPases. For Ca 2+- 
ATPase mutants with alteration to Pro 3t2 at the top of trans- 
membrane segment M4 or Gly 233 in the COOH-terminal part 
of the fl-domain, it was demonstrated that the mutant 
phosphoenzyme retains ADP-sensitivity for minutes following 
incubation with the Ca 2+ chelator EGTA and Ca 2+ ionophore 
[8,9]. As the presence of bound Ca 2+ is required for reversal of 
the phosphorylation with ADP, Ca 2+ must have been present 
in a stably occluded state, unable to dissociate, in the mutant 
phosphoenzyme, indicating that the dissociation of Ca 2+ at the 
extracytoplasmic side of the membrane requires a conforma- 
tional change in the phosphoenzyme which was blocked in the 
mutants [20]. 

Mutation of the Na+,K+-ATPase residue Leu 332, present at 
the position corresponding to that of Pro 3~2 in Ca2+-ATPase, 
resulted in a slowing of phosphoenzyme turnover consistent 
with an effect of the same type as that observed for Pro 312 
mutants of Ca2+-ATPase [32,35]. 

Some conservative replacements of residues in the large cyto- 
plasmic domain have also been shown to block the E1P---> E2P 
transition in the Ca2+-ATPase, while more drastic alterations 
to the same residues prevented phosphorylation from either 
ATP or P~, indicating that these residues are part of the catalytic 
phosphorylation site (residues doubly labelled with squares and 
triangles in Fig. 2) [12,13]. Taken together, the data support the 
hypothesis that the E 1P ~ E2P transition comprises conforma- 
tional changes that originate in the phosphorylation site and are 
transmitted down to the cation binding structure in the trans- 
membrane sector through rearrangements in the//-domain and 
in the M4 stalk connection. This may lead to a rotation or 
tilting of the M4 segment disrupting the Ca 2÷ binding domain 
and making the previously occluded ions accessible to the ex- 
tracytoplasmic surface (Fig. 3 and [20]). 

Very recently, it has been demonstrated that the replacement 
of the tyrosine Tyr 763 at the top of transmembrane segment M5 
with glycine gives rise to a Ca2+-ATPase enzyme in which ATP 

hydrolysis is uncoupled from Ca 2÷ transport [31]. Like the 
ATPase activity of the wild-type Ca2+-ATPase, the ATPase 
activity of the Tyr 763--->Gly mutant was Ca 2+ dependent and 
became fully activated below 10/IM Ca 2+. There was, however, 
no Ca 2+ accumulation in the microsomal vesicles containing the 
mutant. The Vm~ X of the uncoupled ATPase activity of the 
mutant was similar to the Vmax measured with wild-type enzyme 
to which Ca 2+ ionophore had been added to make the mem- 
brane leaky to Ca 2+. The ATP hydrolysis catalyzed by the 
mutant was found to proceed through the E1P and E2P 
phosphoenzyme intermediates and was inhibited by vanadate, 
indicating the formation of an E2 form during the enzymatic 
cycle [31]. Because the E1P--*E2P transition normally is associ- 
ated with release of Ca 2÷ at the extracytoplasmic surface (Fig. 
1), it is possible that the machinery responsible for the translo- 
cation of Ca 2+ is intact in the Yyr763---+ Gly mutant, which would 
mean that the lack of net accumulation of Ca 2+ by the mutant 
is due to an increased rate of efflux of transported Ca 2+ from 
the vesicles through an open transmembrane channel-like 
structure in the ATPase protein [31]. Such an increased passive 
efflux of Ca 2+ would be reminiscent of the Ca 2+ leak through 
the Ca2+-ATPase observed following incubation with phe- 
nothiazines and local anesthetics [53-55]. The latter Ca 2÷ leak 
was suggested to be mediated by reaction intermediates in the 
late part of the reaction cycle [53], Because the Tyr763----)Gly 
mutant is able to occlude Ca 2+ in the El form present following 
incubation with CrATP (J.P. Andersen, unpublished), the 
transmembrane channel-like structure in the mutant may like- 
wise be open only in the late part of the cycle. The side chain 
of Tyr 763 may be required to close the cytoplasmic entrance to 
the channel in the E2P form (Fig. 3). This can possibly be 
generalized to other P-type ATPases, including the Na+,K +- 
ATPase, since the aromatic nature of the residue at the position 
corresponding to Tyr 763 in the Ca2+-ATPase is highly conserved 
within the P-type family. Replacement of the homologous tyro- 
sine in the Na+,K+-ATPase with alanine has resulted in a mu- 
tant that was unable to confer ouabain resistance to transfected 
cells and therefore inactive as a pump [41]. 
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