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Abstract Protein disulfide-isomerase (PDI) is the best known 
representative of a growing family of enzymes with thioredoxin 
domains. Two such proteins with thioredoxin (Trx) domains, 
CaBP1 and CaBP2 (ERp72), have previously been isolated from 
rat liver microsomes. Here we report that they, like PDI are 
substrates for thioredoxin reductase and will catalyze NADPH- 
dependent insulin disulfide reduction. The activity of CaBPI and 
CaBP2 in this assay was higher than that of PDI but lower than 
that of E. coli Trx. Furthermore, as isolated the thioredoxin 
domains of CaBPI and CaBP2 were in disulfide form as judged 
by stoichiometric oxidation of 2 and 3 mol of NADPH in CaBP1 
and CaBP2, respectively. The redox potential of the active site 
disulfide/dithioi was estimated from the equilibrium with a mutant 
E.coli Trx, P34H Trx, with a known redox potential ( -235 mV). 
This showed that CaBPI and CaBP2, like PDI, have a much 
higher redox potential than wild type thioredoxin ( -270 mV) in 
agreement with a role in formation of protein disulfide bonds. In 
conclusion, in vitro CaBP1 and CaBP2 share catalytic properties 
in thiol disulfide-interchange reactions with PDI. Thus, the well 
known activity of PDI is not unique in the endoplasmic reticulum 
and CaBP1 and CaBP2 may be regarded as functional equiva- 
lents. 
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1. Introduction 

Protein disulfide-isomerase (PDI, Mr 57,000) was originally 
isolated as a sulfhydryl-interchange enzyme from beef liver 
microsomes based on its ability to catalyze formation of native 
disulfides and folding of reduced ribonuclease [1]. It can also 
degrade insulin in a GSH-dependent manner and has a histor- 
ical identity as GSH-disulfide transhydrogenase. Studies on the 
role of PDI in disulfide formation have been summarized by 
Freedman [2]. Cloning and sequencing cDNA for PDI revealed 
that PDI contains two domains with strong sequence homology 

*Corresponding author. Fax: (46) (8) 728 4716. 

Abbreviations." PDI, protein disulfide-isomerase; CaBP1, calcium bind- 
ing protein 1 from rat liver microsomes; CaBP2, calcium binding pro- 
tein 2 from rat liver microsomes; DTT, dithiothreitol; DTNB; 5,5'- 
dithiobis(2-nitrobenzoic acid); Trx, E. coli thioredoxin; P34H Trx, 
E. coli thioredoxin with Pro-34 mutated to His; TR, thioredoxin reduct- 
ase; E0', redox potential 

to thioredoxin (Trx) [3]. Thioredoxin has a redoxactive disul- 
fide in the sequence CGPC, which, in its known three-dimen- 
sional structure is located in a hydrophobic surface area and 
catalyzes dithiol-disulfide oxidoreduction of protein disulfides 
[4-6]. The Trx domains of PDI differ in active site sequence by 
a Pro to His substitution, but have apparent catalytical proper- 
ties in common with Trx, including being substrates for thiore- 
doxin reductase [7-9]. However they show a higher redox po- 
tential (-190 or -175 mV), which at least in part is due to the 
Pro to His replacement [10,11]. 

Recently, additional proteins from the endoplasmic reticu- 
lum have unexpectedly been shown to contain similar Trx-like 
sequences. CaBP2 (ERp72) contains three domains with ho- 
mology to Trx and was isolated on the basis of its calcium 
binding [ 12] and stress response properties [13]. CaBP 1 contains 
two Trx-like domains in closer proximity when compared to 
PDI and was isolated for its calcium binding propererties [14] 
or upregulation in hydroxyurea resistant cells [15]. We have 
previously shown that CaBP1 and CaBP2 display protein disul- 
fide reductase activity with insulin in the presence of a low 
molecular weight thiol. Furthermore, they catalyzed formation 
of protein disulfide bonds in reduced ribonuclease or an Fab 
fragment [16]. 

Trx or PDI catalyzes reduction of insulin disulfides together 
with thioredoxin reductase and NADPH in the following reac- 
tions [4,9]. 

TR 

Trx-S2 + NADPH + H ÷ ~ Trx-(SH)2 + NADP + (1) 
Trx-(SH)2 + insulin-S 2 ~ Trx-S: + insulin-(SH)2 (2) 

In this study we examine the ability of CaBP1 and CaBP2 to 
serve as substrates for thioredoxin reductase and estimate their 
redox potential in comparison to thioredoxins. 

2. Materials and methods 

DTT, NADPH, NADP*, DTNB and sodium iodoacetate were pur- 
chased from Sigma. Insulin was a gift from from Nordisk Novo. 
[14C]Iodoacetate was from Amersham. All other chemicals were of 
analytical grade or better. 

2.1. Enzyme purifications 
The enzymes used in this investigation were prepared to homogeneity 

according to previously published procedures: CaBP1 and CaBP2 [17], 
E. coli Trx and P34H Trx [18], PDI [9] and thioredoxin reductase [19]. 
Concentrations of CaBP1 and CaBP2 and of PDl were determined with 
Commassie dye binding [20]. The concentrations of E. coli Trx and PDI 
were determined by absorbance at 280 nm, using extinction coefficients 
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of 47,300 M -~ • cm L for PDI and 14,300 M t • cm -~ for Trx. The concen- 
tration of calf thymus thioredoxin reductase (M r 116,000) was deter- 
mined by activity in a DTNB reduction assay in which 1200 A4Jmin 
in 1 ml was assumed to correspond to 1 nag of the enzyme [19]. 

2.2. Thioredoxin reductase and NADPH-dependent insulin reduction 
assay 

The sensitive insulin disulfide reduction assay [19] was used where 
formation of thiols in insulin was measured spectrophotometrically 
with DTNB in the presence of guanidine hydrochloride. The incubation 
mixture contained 30 nM TR, a defined concentration of thioredoxin, 
PDI, CaBP1 or CaBP2, 0.3 mM insulin, 0.7 mM NADPH, 86 mM 
HEPES buffer, pH 7.9 and 3.3 mM EDTA in a final volume of 0.12 
ml. After incubation for 20 min at 37°C, the reaction was stopped by 
addition of 0.50 ml of 6 M guanidinium hydrochloride and SH-groups 
were determined spectrophotometrically at 412 nm. 

2.3. Reduction of  disulfides in CaBP1 and CaBP2 by thioredoxin 
reductase and NADPH 

In four separate experiments a microcuvette contained either 20 ,uM 
Trx, 7.5 /IM PDI, 7.5 /IM CaBP1 or 7.5 /IM CaBP2 and 25 /tM 
NADPH in 0.10 M Tris-HC1, pH 7.4, 2 mM EDTA in a final volume 
of 0.150 ml. The absorbance at 340 nm was determined against a blank 
containing only buffer. Oxidation of NADPH was initiated by addition 
of I/zl o fa  20,uM stock solution of bovine TR (final concentration 133 
nM). The decrease in absorbance was determined and the concentration 
of disulfides that were reducible by NADPH was calculated using a 
molar extinction coefficient of 6,200 M < .cm ~ for NADPH. The re- 
versibility of the reaction was tried by addition of NADP ÷ to a final 
concentration of 1 mM. 

2.4. Reduction disulfides in CaBP1 and CaBP2 by reduced P34H Trx 
P34H Trx was fully reduced by incubation with 5 mM DTT followed 

by desalting on a Sephadex G-25 column (NAP5 Pharmacia Biotech- 
nology) in 0.1 M potassium phosphate buffer, pH 7.0, 1 mM EDTA. 
The concentration of SH-groups was determined with DTNB [21] and 
related to the protein concentration. The reduced Trx was then incu- 
bated at a molar ratio of2:1 with either CaBP1, CaBP2 or PDI (30/lg 
each) for 20 min at 37°C in a volume of 100/11 of 100 mM potassium 
phosphate buffer pH 7.0 and 1 mM EDTA. Free SH-groups were 
alkylated during 15 min at 25°C with 1.25 mM [t4C]iodoacetate and 3.4 
M guanidinium hydrochloride at pH 8.0. P34H Trx was purified by size 
fractionation on an FPLC column of Superdex-75 (Pharmacia LKB 
Biotechnology) and the redoxstate was determined by relating radioac- 
tivity content to protein concentration as described previously [11]. 

2.5. Antibodies and Western blots 
Antibodies against rat liver thioredoxin reductase were raised in a 

rabbit by several injections of 50 ~tg of homogeneous protein with 
Freund's adjuvant (J.L. and A.H., to be published). The IgG-fraction 
was further purified by precipitation in 37% ammonium sulphate fol- 
lowed by chromatography on thioredoxin reductase immobilized on 
CNBr-activated Sepharose. 

Cytosolic and microsomal fractions of rat liver prepared according 
to [17], were separated on 10% SDS-polyacrylamide by electrophoresis 
followed by electrical transfer to a nitrocellulose membrane. The pres- 
ence of thioredoxin reductase was visualized according to standard 
procedures. Briefly, the nitrocellulose membrane was incubated with 
affinity-purified IgG against thioredoxin reductase followed by goat- 
antirabbit IgG conjugated with peroxidase and subsequently with 0.24 
mg/ml of N'N'-diethyl-p-phenylenediamine in 100 mM sodiumcitrate, 
0.3% chloronaphtol, 0.5% H202 and 1.6% CH3CN. 

3. Results 

3.1. CaBP1 and CaBP2 are substratesJbr thioredoxin reductase 
It was previously shown tha t  CaBP1 and  CaBP2 like PDI  

display insulin reductase activity in the presence of  low molec- 
ular weight thiols like GSH,  D T T  or  cysteamine [12,14]. The  
thioredoxin-l ike domains  of  PDI  are substra tes  for th ioredoxin  
reductase and  can a/so reduce insulin disulfides in an  N A D P H -  
dependen t  m a n n e r  together  with bovine  th ioredoxin  reductase 
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Fig. 1. Activity of CaBP1 and CaBP2 in the standard insulin assay 
compared to thioredoxin and PDI. PD|  (1), CaBPI (A), CaBP2 (,),  or 
E. coli Trx (e) were assayed for their ability to catalyze NADPH- 
dependent insulin disulfide reduction. After 20 min incubation at 37 ° C, 
in the presence of 30 nM bovine TR,  700,uM NADPH, 300 raM.insulin 
and 86 mM HEPES, pH 7.6 and 1 mM EDTA, the formation of 
SH-groups was measured with DTNB according to Ellman, 1959 (in 
this experiment at 405 nm). 

(the insulin assay) [9]. We measured  the activity of  CaBP1 and  
CaBP2 for their  ability to serve as substra tes  for th ioredoxin  
reductase. As shown in Fig. 1, on  a mola r  basis, CaBP1 was 3.0 
times, CaBP2 2.6 times and  E. coli th ioredoxin  was in turn  
6.5-fold more  active than  PDI.  For  proteins with a high second 
order  rate cons tan t  for the reduct ion of  insulin [22], this assay 
will be an indirect measure  of  the interact ion with th ioredoxin  
reductase because of  the high concen t ra t ion  of  insulin (0.3 
mM).  A similar react ion as for PDI  was previously seen for 
CaBP1 and  CaBP2 in the reduct ion of  0.16 m M  insulin with 
different low-molecular  weight thiols [12,14]. Thus,  the relative 
rates in Fig. 1 are likely to reflect different Kin-values for thiore- 

doxin reductase.  

3.2. Stoichiometry o f  N A D P H  oxidation in reduction o f  

disulfides in CaBP1 and CaBP2 
The numbers  of  disulfides in CaBP1 and  CaBP2 tha t  are 

substrates  for th ioredoxin reductase were measured  by follow- 
ing oxidat ion of  N A D P H  at 340 nm. Using 7.5/zM PDI,  15/.tM 
of  N A D P H  was oxidized (Table 1). The result was similar for 
CaBP1.  However,  in the presence of  7 . 5 / I M  CaBP2,  23 /~M 
N A D P H  was oxidized cor responding  to 3 mol of  disulfides per  
mol of  protein.  W h e n  the react ion had  reached a stable level, 
1 m M  N A D P  + was added to the cuvette to test for the revers- 
ibility of  the reaction.  This  did not  result in fo rmat ion  of  
N A D P H .  Cont ro l s  with E. coli Trx resulted in the expected 
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Fig. 2. Redox state of P34H Trx after incubation with PDI, CaBP1 or 
CaBP2. The redox state of P34H Trx was determined after incubation 
at a molar ratio of 2:1 of P34H Trx and PDI, CaBP1 or CaBP2, 
respectively. Free SH-groups were determined using [~4C]iodoacetate. 
The percent of reduced P34H Trx was calculated from the incorpora- 
tion of radioactivity. 

reversible reduction of one disulfide per molecule. This indi- 
cates that CaBP1 and CaBP2, like PDI, have a higher redox 
potential than thioredoxin [11]. 

The amino acid sequences of CaBP1, CaBP2 and of PDI 
reveal that all three proteins contain six cysteine residues 
[3,12,14]. In PDI and CaBP1 four of the cysteines are present 
in two sequence motifs homologous to the active site of thiore- 
doxin, whereas in CaBP2 all six cysteines are present in thiore- 
doxin-like sequences. The number of cysteine residues in the 
sequence CGHC are thus identical to the number of disulfides 
that were reducible with NADPH and thioredoxin reductase. 
This proves that the cysteine residues in thioredoxin-like se- 
quences are isolated as disulfides and that these disulfides can 
be converted to dithiols by NADPH and thioredoxin reductase. 

3.3. Reduction of  disulfides & CaBP1 and CaBP2 by P34H Trx 
The active site disulfides in PDI can be reduced by Trx and 

P34H Trx in a reversible mannner. The equilibrium of this 
reaction was previously used to determine the redox potential 
of the active site disulfides in PDI [11]. A limited set of exper- 
iments were performed to determine whether the redox poten- 
tial of the disulfides in CaBP1 and CaBP2 are in the same range 
as PDI. Reduced P34H Trx was incubated together with PDI, 
CaBP1 or CaBP2 at a molar ratio of 2: l. Analysis of the redox 
state of the P34H Trx at equilibrium revealed that it had be- 
come almost completely oxidized (Fig. 2) and incorporation of 
iodoacetic acid into PDI (CaBPI, CaBP2) increased accord- 
ingly (data not shown). The E0' of P34H Trx is -235 mV 
compared to -270 mV of wt Trx and -190 mV for PDI. We 
conclude that the equilibrium of the reactions: 

P34H-(SH) 2 + CaBP1-S 2 ~ P34H-S2 + CaBPI-(SH): 

P34H-(SH)2 + CaBP2-S 2 ~ P34H-S~ + CaBP2-(SH): 

are shifted to the right and that the two calcium binding pro- 
teins have a higher redox potential than P34H Trx. 

3.4. Cellular localization of  thioredoxin reductase 
Immunoblotting with antithioredoxin reductase antibody of 

cytosolic and microsomal fractions of rat liver revealed exclu- 
sive staining of the cytosolic fractions. Control immunostaining 

with anti-CaBP1 and CaBP2 antibodies gave the expected 
staining of the endoplasmic reticulum fractions (data not 
shown here). 

4. Discussion 

During preparations of PDI, we have previously noted the 
presence of other proteins than PDI or thioredoxin that acted 
as substrates for thioredoxin reductase [9]. Here, we report that 
CaBP1 and CaBP2 are related to PDI not only by sequence but 
also on the basis of their mechanistic properties. Like PDI, the 
two proteins can catalyze protein disulfide formation, reduc- 
tion and isomerization, depending on the imposed redox poten- 
tial [12,16]. Furthermore, the Trx-like domains must have a 
similar structure compared to thioredoxin since they can serve 
as substrates for thioredoxin reductase and catalyze NADPH 
dependent insulin disulfide reduction. 

PDI, CaBP1 and CaBP2 showed similar catalytic properties. 
On a molar basis, CaBPI was most efficient in catalyzing reduc- 
tion of insulin disulfides with NADPH and thioredoxin reduc- 
tase, followed by CaBP2 and PDI. The order of efficiency is 
exactly the opposite (PDI>CaBP2>CaBP1 >Trx) in two inde- 
pendent disulfide formation assays using reduced, denatured 
ribonuclease or Fab-fragment [16]. All three assays are compli- 
cated and depend on multiple steps. It is impossible to assess 
differences in activity to any particular feature of PDI or 
CaBP1 or CaBP2. When precipitation of insulin was followed 
using low molecular weight thiols the order of efficiency was 
the same as in the protein disulfide formation assays. Precipita- 
tion of insulin is thought to be caused by free B-chain aggre- 
gates that become insoluble at high concentration. Therefore, 
although reduction of disulfides in insulin is required for pre- 
cipitation, this is at the same time a measure of isomerase 
activity. 

The intracellular concentration of PDI in the ER is suggested 
to be very high or several hundred #M or nearly mM [23] and 
the concentration of CaBP1 and CaBP2 is similar (data not 
shown). In addition there is yet another protein with thiore- 
doxin-like domains in the endoplasmic reticulum, ERp61, pre- 
viously known as phopholipaseC-c~ [24]. Together, the thiore- 
doxin-like domains in these proteins constitute a significant and 
catalytically active dithiol redox buffer of similar concentration 
as the monothiol GSH and its oxidized form GSSG. The fact 
that these domains can serve as substrates for thioredoxin re- 
ductase, leads to the attractive hypothesis that this protein can 
transfer electrons to NADP + during the oxidative formation of 
protein disulfides. However, this can be excluded on the basis 
of the intracellular location of thioredoxin reductase. If an 
enzyme with a similar activity is located in the endoplasmatic 
reticulum, an efficient NADPH consuming system would have 

Table 1 
Number of disulfides reducible with NADPH and thioredoxin reduc- 
tase in Trx, PDI, CaBPI and CaBP2 

Protein mol SS/mol protein 

Trx 1.0 
PDI 2.0 
CaBP1 2.0 
CaBP2 3.1 

The number of disulfides (S-S) was calculated from the A340 n m  (see 
experimental procedures). 
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to be postulated to allow for the formation of disulfides. This 
reaction would otherwise be blocked by the more than 100 mV 
lower redox potential of the NADPH/NADP + couple com- 
pared to PDI (CaBP1, CaBP2). 

Overexpression of either mammalian ERp72 or the gene 
product EUG1, rescues yeast from the otherwise lethal muta- 
tion in the PDI gene [25,26]. Although this proves that ERp72, 
here called CaBP2, and PDI have overlapping functions also 
in vivo, the picture is complicated by the fact that the essential 
function of PD! does not seem to reside in its disulfide isom- 
erase activity. La Mantia have constructed different strains of 
yeast with mutations in the PDI gene [26]. In particular, when 
one cysteine in each active site was replaced by serine, disulfide 
formation activity was only slightly impaired. It is likely that 
CaBP1 and CaBP2 constitute a sufficient back-up system for 
the disulfide formation activity of PDI. In addition, it seems 
likely that PDI, as well as CaBP1 and CaBP2 could play 
chaperone functions [27]. In this respect, the three proteins 
might interact with different nascent secretory proteins. 
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