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Purified retinal nitric oxide synthase enhances ADP-ribosylation of 
rod outer segment proteins 
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Abstract Nitric oxide synthase is present in different cell layers 
of vertebrate retina and seems to have neuromodulatory functions 
in the outer retina. The enzyme, when purified from a bovine 
retina extract, has an apparent molecular mass of 160 kDa and 
resembles the neuronal constitutive NOS type I with respect to 
CaZ+-calmodulin sensitivity, K m value and inhibition by analogues 
of L-arginine. Retinal NOS is present in a preparation of rod 
outer segments attached to parts of the inner segments, but not 
in pure outer segments. We describe the enhancement of specific 
ADP-ribosylation of outer segment proteins by purified retinal 
NOS.  

Key words: Retina; Nitric oxide synthase; Rod  outer segment; 
ADP-ribosylat ion 

1. Introduction 

The inorganic gas molecule nitric oxide (NO) acts as a neu- 
ronal messenger in many cell types of  the central and peripheral 
nervous system [1 3]. There is also evidence from recent studies 
that N O  is involved in several different processes in the verte- 
brate retina, for example it influences light responses of  am- 
phibian rods [4,5], it activates a soluble guanylyl cyclase and 
modulates a Ca 2+ channel and a voltage-independent conduct- 
ance in inner segments of  photoreceptors [6,7]. Effects of  NO 
were also recorded on hemi-gap junction channels in horizontal 
cells [8], on cGMP-gated  cation channels in retinal ganglion [9] 
and on-bipolar cells [10]. cGMP-independent  effects of  NO 
donors include the ADP-ribosylat ion of  rod outer segment 
proteins [11,12] and modulat ion of  endogenous dopamine re- 
lease in the retina [13]. 

Presence of  the NO-generating enzyme nitric oxide synthase 
(NOS) in the retina has been documented by immunocyto-  
chemistry and NADPH-diaphorase  histochemistry [6,7,9,14~ 
21], however, the data on cell staining are inconsistent. Most  
authors describe staining of  subpopulations of  amacrine and 
ganglion cells, but in some reports labelling of  photoreceptor  
inner segments and cone outer segments was also demonstrated 
[6,7,17,19]. Additionally, NOS activities have been determined 
biochemically in crude retinal extracts [22,23] and in a photore- 
ceptor preparation of  outer segments attached to parts of  the 
inner segment (OS-IS), where the NOS activity was almost 
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Abbreviations: retNOS, retinal nitric oxide synthase; ROS, rod outer 
segments; OS-IS, outer segments attached to parts of the inner seg- 
ments; PMSF, phenylmethylsulfonylfluoride; H4B, (6R)-5,6,7,8- 
tetrahydro-L-biopterin; SNP, sodium nitroprusside; SIN-l, 3-mor- 
pholinosydnonimine. 

exclusively found in the inner segment [6]. Enzymatic properties 
indicate a relationship between the retinal enzyme and the neu- 
ronal NOS type I from mammalian  brain [24,25]. So far the 
retinal enzyme has not  been purified or cloned and therefore 
knowledge of  its molecular and enzymatic properties is limited. 
It was the aim of  our study to identify and purify NOS from 
bovine retina in order to determine some of  its key properties. 
Furthermore,  we used isolated active re tNOS in a reconstitu- 
tion experiment with rod outer segment proteins to investigate 
changes in ADP-ribosylat ion of  outer segment proteins. 

2. Materials and methods 

2.1. Materials' 
2'-5'-ADP-Sepharose 4B was obtained from Pharmacia, (6R)-5,6,7,8- 

tetrahydro-L-biopterin from ICN, [3H]L-arginine and adenylate- 
[32p]NAD from Amersham, fl-NADPH from Biomol. All other rea- 
gents were obtained from Sigma unless otherwise noted. Zaprinast was 
a gift from Baker and May, and SIN-1 was a gift from Dr. P. Wohlfahrt 
(Hoechst). 

2.2. Pur~cation of retNOS 
Bovine eyes were obtained from the local slaughterhouse, the retinae 

were directly removed and frozen at -80°C. All enzyme purification 
steps were performed at 4°C. 100-150 retinae were thawed and homog- 
enized in 150 ml of buffer A (10 mM Tris-HC1 (pH 7.5), 0.1 mM EGTA, 
12.5 mM 2-mercaptoethanol, 0.1 mM PMSF). The crude homogenate 
was centrifuged at 100,000 x g for 40 min. Solid ammonium sulfate 
(0.176 mg.ml ~, 30%) was added to the supernatant to precipitate 
retNOS and centrifuged at 100,000 × g for 30 min. The pellets were 
washed with buffer A containing 0.176 mg.ml -j (NH4)2SO 4 and then 
dissolved in buffer A. This fraction was centrifuged again at 100,000 x g 
for 30 min to remove unsoluble components. The dissolved ammonium 
sulfate precipitate (30 ml) was applied to 0.5 ml 2'-5'-ADP-Sepharose 
4B (Pharmacia) equilibrated with buffer A. The solution was circulated 
four times through the Sepharose column. Afterwards, the column was 
washed with 20 ml of buffer A, 10 ml of buffer B (buffer A, 500 mM 
NaCI) and again with 10 ml of buffer A. The retNOS was eluted with 
5 ml of buffer C (buffer A, 10 mM ,8-NADPH). Protein-containing 
fractions were pooled, and 2 mM CaC12 and 10 mM Tris-HC1, pH 7.5, 
were added. 

The pooled fractions (6 ml) of the 2'-5'-ADP-Sepharose chromatog- 
raphy step were applied to 0.3 ml calmodulin-agarose (Sigma) eqili- 
brated with buffer D (20 mM Tris-HCl (pH 7.5), 2 mM CaC12, 12.5 mM 
2-mercaptoethanol, 0.1 mM PMSF). The ADP-Sepharose eluate was 
passed four times through the column before the column was washed 
with 10 ml of buffer D, 10 ml of buffer E (buffer D, 400 mM NaCI) and 
again with 10 ml of buffer D. retNOS was eluted with buffer F (buffer 
D, 10 m M EGTA instead of 2 mM CaCI2). Protein-containing fractions 
were pooled. 

2.3. Enr~vme assays 
RetNOS activity was determined by the formation of [3H]L-citrulline 

from [3H]e-arginine as previously described [24,25]. Briefly, samples (50 
/ll) were incubated for 5 min at 37°C in the presence of 25 mM Tris-HCl 
(pH 7.5), 1 mM CaCl2, 0.5 mM DTT, 0.1 mM fl-NADPH, 5/~M H4B, 
1/.tM FAD, 1/.tM FMN, 0.5 tzg calmodulin and 5/IM L-arginine (0.1 
mCi//lmol) in a final volume of 100 HI. The reaction was stopped by 
adding 400 ,ul of 10 mM EGTA and 20 mM HEPES (pH 5.5) and 
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applied to 1-ml columns of Dowex 50X8-200 (Sigma). The [3H]L-Cit- 
rulline was eluted twice with 0.75 ml of water and quantified by liquid 
scintillation spectroscopy. Free Ca 2+ concentrations were adjusted by 
Ca2+/EGTA buffer mixtures calculated with a calcium buffer program 
as previously described [26]. Functional coupling of retNOS and solu- 
ble guanylyl cyclase was determined a described [6], but Zaprinast was 
used as a phosphodiesterase inhibitor instead of 3-isobutyl-l-meth- 
ylxanthine (IBMX). Neuronal NADPH diaphorase activity was as- 
sayed with 0.5 mM Nitro blue tetrazolium and 1 mM NADPH exactly 
as described [27]. 

2.4. F2p]ADP-ribosylation of photoreceptorproteins 
ADP-ribosylation was carried out following essentially the method 

of Pozdnyakov et al. [12]. ROS suspension (20 pg rhodopsin/assay) or 
ROS cytosolic fraction (8 pg protein/assay) were incubated in a final 
volume of 50/.tl containing 50 mM Tris-HC1, pH 7.5, 5 mM DTT, 50 
mM NaCl, 2 mM MgC12, 1 mM ATP, 0.1 mM GTP, 10 mM thymidine 
and 10 pM NAD (2.5/tCi adenylate-[32P]NAD/assay). In reconstitution 
experiments 0.5/lg purified retNOS were added to the incubation mix- 
ture containing 1 ,uM FAD, 1/tM FMN, 5pM H4B, 100pM L-arginine 
and 100/.tM NADPH. After 60 min of incubation at 37°C the reaction 
was stopped by the addition of electrophoresis sample buffer. The 
samples were electrophoresed in 10% SDS-polyacrylamide gels. After 
Coomassie blue staining and drying, the gels were exposed to Kodak 
X-OMAT AR films for 72 h at -80°C. 

2.5. Protein determination 
Protein concentrations were determined by the method of Bradford 

[28] using the Bio-Rad assay solution and bovine serum albumin as a 
standard. 

2.6. Gel-electrophoresis 
SDS-PAGE was carried out with 7.5% or 10% polyacrylamide gels 

[29]. The gels were stained for protein using Coomassie blue dye. The 

high molecular mass standards (Pharmacia) included myosin (212 
kDa), az-macroglobulin (170 kDa),fl-galactosidase (116 kDa), transfer- 
rin (76 kDa), glutamate dehydrogenase (53 kDa) and the low molecular 
mass standard (Pharmacia) included phosphorylase b (94 kDa), albu- 
min (67 kDa), ovalbumin (43 kDa), carboanhydrase (30 kDa), trypsine 
inhibitor (20.1 kDa) and a-lactalbumin (14.4 kDa). 

3. Results and discussion 

Retinal nitric oxide synthase (retNOS) could be purified 
from bovine retina extract by ammonium sulfate precipitation 
and two subsequent chromatographic  steps, first on 2 ' -5 ' -ADP- 
Sepharose and second on calmodulin-agarose (Table 1). Am- 
monium sulfate precipitation yielded a pellet that contained 
over 60% of  NOS activity present in the retina extract and 
about  20% of  the soluble proteins. After  dissolving the ammo- 
nium sulfate precipitate re tNOS was specifically bound to a 
2 '-5 ' -ADP-Sepharose.  NOS activity was eluted from the col- 
umn by 10 m M  f l -NADPH.  The protein composit ion of  this 
fraction is shown in Fig. 1 (lane 2). The fraction contained a 
distinct band at 160 kDa  and several more intensely labelled 
bands at 36 kDa, 55 kDa,  65 kDa  and a doublet  at 104 and 116 
kDa. Affinity chromatography on 2 '-5 ' -ADP-Sepharose was an 
effective purification step for re tNOS with a 1000-fold increase 
in specific activity. Contaminat ing proteins were separated 
from the band at 160 kDa  by calmodulin-affinity chromatogra-  
phy. Re tNOS activity was eluted by 10 m M  EGTA. Eluted 
fractions contained a single band at 160 kDa  (Fig. 1, lane 3). 
Occasionally we observed some minor  bands below 100 kDa  
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Fig. 1. SDS-PAGE analysis of fractions obtained during purification of retNOS. About 10 pg protein was applied on each lane. The gel was stained 
with Coomassie blue. (A) Lanes: (1) retina extract after centrifugation at 100,000 × g; (2) NADPH eluate of the 2'-5'-ADP-Sepharose column; (3) 
EGTA eluate of the calmodulin-agarose column. (B) The molecular mass of purified retNOS was determined in a Rr vs. log mass plot to be 
160 kDa. 
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Fig. 2. Enzymatic properties of retNOS. (A) Purified retNOS (~0.5/.tg) was incubated with different amounts of the substrate L-arginine. Activity was 
determined by measuring the formation of [3H]L-citrulline. (B) Lineweaver-Burk plot showing inhibition of retNOS by N~-nitro- arginine (inhibitor 
concentration as indicated on the right). Activity of retNOS was monitored by the formation of cGMP catalyzed by an endogenous soluble guanylyl 
cyclase in rod OS-IS preparations in a coupled bioassay [6]. 

that could be removed mostly by ultrafiltration with Centricon- 
100. Purified retNOS exhibited a specific activity of 3.6 nmol 
L-citrulline min ~.mg -~. Starting from a retina extract of  80 
retinae (1.2 g protein) we obtained 0.01 mg retNOS with 0.4% 
recovery of total activity. The overall enrichment in purification 
was 1600-fold. Purified retNOS has a half-life of 12 h either at 
4°C or -20°C. Activity of retNOS in a retina extract was stable 
over 24 h at 4 °C. 

The sequential use of two affinity columns, 2'-5'-ADP- 
Sepharose and calmodulin-agarose, closely resembled the puri- 
fication scheme of the neuronal type of a NOS [24,25] and 
indicated a dependence of enzyme activity on N A D P H  and 
calmodulin. No retNOS activity was detected without addition 
of N A D P H  and calmodulin to the purified protein sample. 
Activity of retNOS was also dependent on the cofactors FAD 
and H4B [6]. Omitting either FAD or H4B in the incubation 
mixture yielded vetNOS activities of 40% and 25%, respectively. 
Fractions obtained from chromatographic procedures were 
also assayed for neuronal  NADPH-diaphorase  activity [27]. All 
fractions that showed NOS activity in the [3H]L-citrulline assay 
exhibited NADPH-diaphorase  activity, but  diaphorase activity 
was also detected in fractions devoid of retNOS. L-Arginine 

conversion by retNOS could be blocked by the diaphorase 
substrate Nitro blue tetrazolium. 

Enrichment of retNOS activity resulted in isolation of a 160 
kDa protein, which is in agreement with our previous observa- 
tion that crude retinal extracts show immunoreactivity of a 160 
kDa band with an anti NOS-I antibody [6]. Purified retNOS 
was also immunolabelled by the same antiserum (data not 
shown). Kinetic data for purified retNOS revealed a Km for 
L-arginine of 4 .8pM and a Vma x of 12.5 nmol .min  ~.mg -j (Fig. 
2A). The calcium-dependent activation without competing 
Mg 2+ ions but in the presence of saturating amounts  ofcalmod- 
ulin was 0.36 pM.  Enzyme activity was specifically inhibited by 
N°'-nitro-arginine with an apparent KI of 0.2/.tM. Analysis of 
inhibition by N~-nitro-arginine in a Lineweave~Burk plot (Fig. 
2B) uncovered a mixed-type of inhibition. This is in agreement 
with the observation that only the binding of the arginine deriv- 
ative to brain NOS is competitive, but that inhibition of the 
enzyme is more complex [30]. Inhibit ion by N'°-nitro-arginine 
is a useful pharmacological tool to distinguish constitutive NOS 
from the inducible type as expressed in macrophages, since the 
latter isoform shows a much higher inhibitory constant of 212 
p M  [1]. Inducible NOS is expressed in bovine retinal pigmented 

Table 1 
Purification of NO synthase from bovine retinae 

Purification step Protein concentration Total activity Specific activity Purification 
(pg. ml-~ ) (pmol • min-~ ) (pmol - min- t. mg ~ ) (-fold) 

Retine extract 10,375 950 2.29 
(NH4)2SO 4 precipitation 2400 597 332 145 
ADP-Sepharose elution 180 450 2488 1100 
Calmodulin-agarose elution 10 4 3568 1600 

The enzyme was purified as described. NOS activity of each fraction was determined by measuring the formation of L-citrulline from L-arginine. 
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epithelial cells and retinal Miiller glial cells after t reatment with 
interferon-)" or lipopolysaccharides [31-33]. 

A comparison of  the neuronal NOS purified from human, rat 
and porcine brain [24,25,34,35] with bovine re tNOS revealed in 
most cases similar properties (Table 2) for both enzymes, but 
displayed one remarkable difference. The retinal enzyme 
showed a 10- to 100-fold lower Vmax, yielding a very low turn- 
over number for the purified enzyme of  1.8 L-citrulline or N O  
per min. At present we cannot decide whether this low turnover 
number is a specific property of  NOS in a highly specialized 
neuronal tissue (retina) or reflects a loss of  enzymatic activity. 
There is recent evidence that NO has neurotoxic effects on 
retinal tissue. Phagocytosis of  photoreceptor  outer segments is 
decreased by addition of  the NO donor  SIN-1 to cultured RPE 
cells [36], and NOS inhibitors like N%nitro-arginine can pre- 
vent photoreceptor  degeneration [37]. Production of  N O  in the 
retina is probably kept low in order to save neurons from its 
cytotoxic potential. It will be interesting to elucidate the molec- 
ular basis of  the observed differences and whether increased 
NO synthesis is involved in retinal degeneration. 

ROS contain an ADP-ribosyltransferase activity that can be 
regulated by the NO donor  SNP [11,12]. We observed a similar 
effect with the compound SIN-1 known to release NO in neu- 
tral aqueous solution. NO mainly increased the ADP-ribosyla-  
tion of  a 37 39 kDa  protein, presumably c~-transducin, as pre- 
viously reported [11,12]. We also detected a stimulated labelling 
of  a band at 110 kDa  in the membrane fraction by SNP as 
reported in [12], but its ADP-ribosylat ion was not significantly 
altered by SIN-I  or re tNOS (Fig. 3). It was previously sug- 
gested that NO generated by an endogenous NOS in ROS can 
have the same effect on ADP-ribosylat ion [12]. However,  im- 
munocytochemical,  NADPH-d iaphorase  histochemical and bi- 
ochemical studies have demonstrated the presence of  re tNOS 
in inner segments but not in ROS [6,7]. Consistent with these 
studies we detected no significant NO synthesis in pure ROS 
and consistently no change in ADP-ribosylat ion.  However,  
adding purified re tNOS to ROS resulted in the labelling of  
c~-transducin that we observed after addition of  SIN-1 (Fig. 3). 
Furthermore,  using a photoreceptor  preparation of  rod OS-IS 
we spotted ADP-ribosylat ion to the same extent (not shown). 
Our data provide biochemical evidence that ADP-ribosylat ion 
of  ROS proteins, particularly transducin, is regulated by NO 
that is synthesized from retNOS located in inner and not in 
outer segments. We hypothesize a feedback communicat ion 
between the photoreceptor  inner and outer segment transmit- 
ted by the neuronal messenger NO. 

Table 2 
Properties of retNOS and NOS-I 

Type retNOS NOS-I 

Source Retina Cerebellum 
Molecular weight from SDS-PAGE 

(kDa) 160 15(~ 160 
L-Arginine, Km ~M)  4.8 2-8 
Vma x (uM'min -I 'mg i) 0.0125 0.3-3.4 
Nitro-L-arginine, K~ ~M)  0.2 0.054).9 
Ca 2+, ECs0 (elM) 0.36 0.2~0.4 
Activity without 

Calmodulin None None 
fl-NADPH None None 

Data of ret NOS were obtained from 3-5 sets of experiments and 
represent mean values. Data of NOS-I were taken from a review [1]. 
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Fig. 3. Autoradiography of [32p]ADP-ribosylated ROS proteins en- 
hanced by nitric oxide. Whole ROS were incubated with either 100/.tM 
SNP or 100 pM SIN-1 or 0.5 pg retNOS (in the presence of 100/,tM 
e-arginine and 100 M fl-NADPH. Lane C represents the control incu- 
bation without artificial or physiological NO donors. 
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