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Abstract Here we describe the identification of the targeting 
sequence of peroxisomal amine oxidase (AMO) of 1t. polymor- 
pha. Deletion analysis revealed that essential targeting informa- 
tion is located within the extreme N-terminal 16 amino acids. 
Moreover, this sequence can direct a reporter protein to the 
peroxisomal matrix of H. polymorpha. The N-terminal 16 amino 
acids of AMO contain a sequence with strong homology to the 
conserved PTS2 sequence. Therefore, AMO is considered to be 
a PTS2 protein. 
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1. Introduction 

The yeast Hansenula polymorpha can utilize primary amines 
(e.g. methyl- and ethylamine) as a sole nitrogen source for 
growth. The key enzyme of the metabolism of these compounds 
is the peroxisomal matrix enzyme amine oxidase (AMO) which 
converts primary amines into their corresponding aldehydes, 
ammonium and hydrogen peroxide. The synthesis of AM O is 
fully repressed by ammonium ions but  is induced during growth 
of cells on primary amines as the sole N source [1]. 

Two classes of peroxisomal targeting signals (PTS) have been 
identified so far. The first one (PTS1) was found at the extreme 
C-terminus of firefly luciferase which comprises the three 
amino acids SKL-COOH. In apparent contradiction to its 
small size, a high level of degeneracy of the PTS 1 was shown 
by site-directed mutagenesis experiments, and variants of this 
sequence are present at the C-terminus of many peroxisomal 
proteins [2,3]. Also in H. polymorpha, import of  the majority 
of the peroxisomal matrix proteins is mediated by a PTS1 
signal, for example A R F  in alcohol oxidase, N K L  in dihydrox- 
yacetone synthase and SKI in catalase [4,5]. 

The second type of peroxisomal targeting signals (PTS2) was 
found in the presequence of peroxisomal thiolase from rat [6]. 
Comparable sequences have been found in the N-termini of 
other peroxisomal proteins, e.g. human  and yeasts thiolases, 
watermelon malate dehydrogenase and Trypanosoma brucei al- 
dolase. These sequences, which also contain peroxisomal tar- 
geting information,  conform to the general consensus RL-X 3- 
H/QL [2,7,8]. 

Based on the similarity between the N-terminus of AM O and 
the PTS2 consensus sequence [2], we have studied targeting of 
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AM O in detail by determining the intracellular location of a 
truncated form of AM O and several hybrid proteins consisting 
of C- or N-terminal parts of AM O fused to heterologous re- 
porter proteins. The results indicate that the targeting informa- 
tion of AM O resides within the first 16 amino acids of the 
N-terminus of the protein. 

2. Materials and methods 

2.1. Microorganisms and growth conditions 
All strains used in this study are listed in Table 1. Transformants 

carrying truncated or hybrid genes under the control of the H. polymor- 
pha alcohol oxidase promoter (PAox) are derivatives of H. polymorpha 
AI6 [9]. Strain A17 is an ura- derivative of A16 obtained by selection 
on 5-ftuoric acid (FOA) (J. Cregg, unpublished). To obtain expression 
of truncated or hybrid genes, the cells were grown in batch cultures in 
mineral medium [10] on 0.1% (v/v) glycerol, 0.5% (v/v) methanol mix- 
tures supplemented with 0.20% (w/v) methylamine as sole nitrogen 
s o u r c e .  

2.2. Molecular genetics and yeast transformation 
All standard genetic procedures were according to [11]. Mutated 

DNA fragments and fusion points of the hybrid genes were sequenced 
using the T7 sequencing kit from Pharmacia (Uppsala, Sweden). Yeast 
cells were transformed by electroporation [12]. 

2.3. Plasmid constructions 
All truncated and hybrid genes (see Fig. 1) were inserted in vector 

pHIPX2 [13], containing the Saccharomyces cerevisiae LEU2 gene for 
selection and autonomous replication in H. polymorpha [14] and the 
PAox for driving the expression of heterologous genes. Bacterial ,8- 
lactamase and the mature part of watermelon (glyoxysomal) malate 
dehydrogenase (gMDH) [15] were used as reporter proteins. The gene 
coding for bacterial ,8-1actamase (,81ac) was adapted for in-frame fu- 
sions by site- directed mutagenesis, hereby introducing a SmaI-XmaI 
site preceding the N-terminal coding region, or a Xbal site following 
the C-terminal coding region. Restriction sites used for constructing the 
truncated and hybrid proteins, and insertion of these genes in pHIPX2, 
are given in Fig. 1. 

2.4. Disruption of the AMO gene 
A 1624 bp HindlII-Hpal (-32 to +1592) fragment containing the 

translation initiation site and the coding region of AMO up to codon 
Wal TM [15] was replaced by a 2.2-kb EcoRI BamHI fragment containing 
the Candida albicans LEU2 gene. A 3.3-kb Pvu|I SacI fragment con- 
taining the LEU2 and AMO flanking regions was used to transform 
strain A17, forcing homologous recombination at the genomic AMO 
locus (Fig. 5A). 

2.5. Biochemical methods 
Crude extracts were prepared as described [17]. Protein concentra- 

tions were determined with the Bio-Rad protein assay kit using bovine 
serum albumin as a standard. Activities of alcohol oxidase [18], amine 
oxidase [19], cytochrome c oxidase [20] and fl-lactamase [21] were as- 
sayed as described. Peroxisomes were purified by differential and su- 
crose density centrifugation of homogenized protoplasts [20]. Crude 
extracts and subcellular tractions were analyzed by SDS-PAGE [22] 
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Fig. 2. Subcellular location of hybrid and truncated proteins, determined by cytochemical procedures. Polyclonal antibodies against fl-lactamase 
(A, B and D), gMDH (C) or AMO (F) were used in combination with gold-conjugated goat anti-rabbit antibodies. AMO activity was localized by 
Ce 3+ activity staining (E). (A) fl-Lac-C39AMO; (B) N63-AMO-fl-lac; (C) N63AMO-gMDH; (D) Nl6-AMO-fl-lac; (E and F) AN~6AMO. Only cells in 
which the hybrid proteins containing N-terminal parts of AMO were expressed showed clear peroxisomal labelling, whereas the truncated AMO was 
excluded from the peroxisomes. The inset in (F) shows the labelling pattern of WT AMO. N, nucleus; P, peroxisome; V, vacuole. Bars = 0.5 ,um. 

___) 

followed by Western blotting, using the protoblot immunoblotting sys- 
tem (Promega Biotec) and polyclonal antibodies against H. polymorpha 
AMO, fl-lactamase and watermelon gMDH. 

2.6. Electron microscopy 
The methods for the preparation of cells for electron microscopy 

have been described earlier [10]. Immunocytochemical experiments 
were performed on ultrathin sections of unicryl-embedded cells, using 
specific antibodies against AMO, fl-lactamase and gMDH, and gold 
conjugated goat anti-rabbit antibodies. 

3. Results 

Efficient import of PTS2 proteins in H. polymorpha is de- 
pendent on the induction of a specific import machinery by 
amine substrates [13]. Therefore, all transformed strains were 
grown on media containing methylamine as the sole N source 
and glycerol/methanol mixtures as C sources. 

3.1. The C-terminus of  A M O  does not contain a PTS  
Earlier we reported that deleting the C-terminal 12 amino 

acids, which contain an internal PTS1 sequence (SRL), does 
not interfere with normal targeting of the mutant protein [23]. 
To confirm that targeting information is indeed absent from the 
C-terminus of AMO, a hybrid protein was constructed consist- 
ing of the 39 C-terminal amino acids of AMO and fl-lactamase 
(fllac-C39AMO). Cells synthesizing the hybrid protein were 
subjected to cell fractionation studies. These showed that fllac- 
C39AMO was predominantly present in the soluble fraction, 
and co-fractionated with the cytosolic protein formaldehyde 
dehydrogenase (data not shown). The cytosolic location of the 
hybrid protein was confirmed immunocytochemically using 
specific antibodies against fl-lactamase (Fig. 2A). In addition, 
a significant amount of label was found in the nucleus, an 
observation which is not uncommon if cytosolic proteins are 
expressed to high levels in H. polymorpha [8]. 

3.2. The N-terminus of  am&e oxidase mediates protein 
translocation into peroxisomes 

Hybrid genes were constructed encoding the 63 N-terminal 
amino acids from AMO fused to either fl-lactamase (N63AMO- 

Table 1 
H. polymorpha strains 

Strain Genotype Ref. 

A16 leu2 
A 17 leu2 ura3 

GF54 
GF55 
GF57 
GF76 
GF96 
GF99 

A16 + pGF154 (N~6AMO-fl-lactamase) 
A16 + pGF155 (N63AMO-fl-lactamase) 
AI6 + pGF188 (fl-lactamase-C39AMO) 
ura3 amo .. Leu2c. albicans 
GF76 + pGF237 (ANI6AMO) 
AI6 + pGF242 (N63AMO-gMDH) 

[10] 
Gregg, 
unpublished 
This study 
This study 
This study 
This study 
This study 
This study 

fllac) or the mature part of watermelon glyoxysomal malate 
dehydrogenase (N63AMO-gMDH), proteins which in earlier 
studies were found in the cytosol when expressed in H. polymor- 
pha [4,8]. Cell fractionation studies performed on strains ex- 
pressing these proteins showed that a significant amount of the 
hybrid proteins was observed in the particulate fraction (shown 
for N63AMO-gMDH, Fig. 3). Immunocytochemically, specific 
peroxisomal labelling was found using antibodies against the 
reporter proteins (Fig. 2B and C). However, cytosolic labelling 
was also evident, indicating that the hybrid proteins were only 
partially imported. To delimitate the topogenic information, we 
subsequently fused a smaller N-terminal fragment of AMO to 
fl-lactamase. Cells, synthesizing this hybrid protein, N16AMO- 
fllac, were analyzed biochemically and immunocytochemically. 
Again, a significant amount offl-lactamase activity was found 
in the organellar fraction (P4)- After sucrose density centrifuga- 
tion of the P4 fraction, the fl-lactamase activity showed a similar 
distribution pattern as endogenous AMO (Fig. 4), indicating 
that at least part of the hybrid protein is peroxisome-bound. 
Immunocytochemical experiments confirmed these results (Fig. 
2D). The peroxisomal labelling was often observed in specific 
parts of the peroxisomal matrix, indicating that the hybrid 
protein may have aggregated, a phenomenon observed earlier 
when fl-lactamase was fused to a PTS 1 signal and expressed in 
H. polymorpha [21]. 

3.3. A short deletion of  the N-term&us of  A M O  abolishes 
peroxisomal targeting 

In order to seek further evidence that the topogenic informa- 
tion of AMO indeed resides within its N-terminal 16 amino 
acids, a truncated AMO gene, lacking the DNA fragment en- 
coding the N-terminal amino acids, was constructed 

amino 
acids 

H E St Sm Sc 
AMOw. r ~ ~ ~ 692 

Ec ~2}~ Sm Sc 
I / ~ 307 Blac-C3sAMO 

H St?m*  H 
Ns3AMO-Blac ~ ~ 330 

H St Xm* SI 
Ns3AMO-gMDH ~ ~.-J.-.-.-. ~H.-.-H///. -. ~H. ~ 376 

H E*Sm H 
NlsAMO-Blac ~\r ~ 280 

"NlsAMO Sp~/E**U. S c  677 

Fig. 1. Schematic drawing of the truncated and hybrid proteins. The 
restriction sites used for the construction of the hybrid/truncated genes, 
and for the insertion into the expression vector pHIPX2, are indicated. 
Open box, AMO sequences; solid box, fl-lactamase sequences; hatched 
box, gMDH sequences. E, EagI; Ec, EcoRI; H, HindIII; N, NcoI; 
Sc, SacI; SI, SalI; Sin, SmaI; Sp, SphI; St, StuI; Xb, XbaI; Xm, Xmal; 
*, sticky ends filled in using Klenow enzyme; **, sticky ends removed 
using Mung bean. 



t~
 



118 K.A~ Faber et al./FEBS Letters 357 (1995) 115 120 

1 2 

AO 
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Fig. 3. Western blot analysis of subcellular fractions of strain GF99 
expressing N63AMO-gMDH. Homogenized protoplasts were fraction- 
ated by differential centrifugation into a cytosolic fraction (30,000 × g 
supernatant, lane 1) and an organellar fraction (30,000 × g pellet, lane 
2). 20 pg of protein was loaded in each lane. Antibodies against alcohol 
oxidase (AO; upper panel) and gMDH (lower panel) were used. 

(AN 16AMO). To avoid misinterpretation of its subcellular sort- 
ing due to the synthesis of endogenous AMO, the truncated 
AMO protein was synthesized in an A M O  disruption strain. 
This A M O  disruption strain was obtained by transforming 
strain A17 with a linear DNA fragment containing the LEU2 
gene from C. albicans flanked by fragments homologous to the 
genomic A M O  locus ofH. polymorpha, forcing transplacement 
integration at that site. One strain was selected (designated 
GF76), which fully lacked AMO, and Southern blot analysis 
showed that site specific integration had occurred (Fig. 5B). A 
plasmid carrying the AN16AMO gene behind the PAox was used 
to transform strain GF76, yielding GF96. Upon growth of 
these cells in glycerol/methanol/methylamine-containing me- 
dium, synthesis of the ANI6AMO was demonstrated by West- 
ern blot analysis; furthermore, the truncated AMO still dis- 
played enzyme activity (data not shown). The subcellular loca- 
tion of ANI6AMO was determined by biochemical and ultra- 
structural methods. After differential centrifugation of homog- 
enized protoplasts from strain A16 and GF96, cytosolic ($4) 

and organellar fractions (P4) were obtained. Western blot anal- 
ysis revealed that, in contrast to WT AMO, ANI6AMO was 
predominantly present in the cytosolic fraction ($4) (Fig. 5C). 
This result was confirmed cytochemically and immunocyto- 
chemically (Fig. 2E and F). Whereas WT AMO was strictly 
peroxisomal (Fig. 2F, inset), the truncated AMO was only 
detected in the cytosol, indicating that the N-terminal 16 amino 
acids are essential for targeting of AMO in H. polymorpha but 
do not abolish protein activity. 

4. Discussion 

Here we describe that the N-terminus of peroxisomal AMO 
of H. polymorpha contains topogenic information for subcellu- 
lar sorting. The N-terminal 16 amino acids of AMO are able 
to direct the cytosolic reporter protein, bacterial fl-lactamase, 
to peroxisomes of H. polymorpha. Moreover, a truncated form 
of AMO, lacking the first 16 N-terminal amino acids, remains 
in the cytosol. The AMO N-terminus contains a sequence 
which shows homology to the proposed PTS2 consensus se- 
quence RL-Xs-H/QL [2]. In AMO, the second leucine residue 
is replaced by an alanine; RL-Xs-QA. Hybrid proteins, consist- 
ing of N-terminal parts of AMO and a reporter protein (either 
fl-lactamase or the mature part of malate dehydrogenase 
(gMDH) were, however, only partially imported into per- 
oxisomes of H. polymorpha. This might indicate that AMO 
contains additional targeting information elsewhere in the pro- 
tein. However, the truncated form of AMO (AN~6AMO) re- 
mained in the cytosol, implying that no additional targeting 
information is present in AMO which individually can act as 
a PTS. Therefore, we conclude that the essential targeting infor- 
mation in AMO resides within the N-terminal sequence. 

The inhibitory effect of heterologous protein fragments on 
efficient targeting is, however, not uncommon and was also 
observed when fragments of S. cerevisiae catalase [24], human 
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Fig. 4. Cell fractionation of strain GF54 expressing Nj6AMO-fllac. The 30,000 x g pellet obtained after differential centrifugation of homogenized 
protoplasts was fractionated on a sucrose gradient and divided into fractions of 1 m l . ,  protein concentration (mg/ml); o, cytochrome c oxidase 
activity (AE55 o . min -t. ml-l); II, amine oxidase activity (3E42, min -I" ml ~); I!', fl-lactamase activity (zJE486 . rain -l. ml-l). 



~N. Faber et aL /FEBS Letters 357 (1995) 115-120 

A Probe 

Ps Ec Pv 

lkb  

H 
It jI I 

119 

B kb 1 2  C 
6 .  -ii~'i:::Piiiii!i!~i!ii!!!!!!!i 

4.o_ iii!iiiii::::i! AO 
!;i? ii!:iil;:ii{i!~i};iill ~, 

36-~iiiiii~:iiiiiii' ::i 
2 . 7 -  : iii,iiiil AMO 

ii ~; !i 

iiiii, iiiiii!i~!~iii;~!!iii:ili 
- - iili !iiii !i;ii~iiiiii; ii 

1 2 3 4 

Fig. 5. Analysis of the AMO disruption strain (GF76) and strain GF96 expressing the truncated AMO protein, ANI6AMO. (A) Schematic 
representation of site-specific integration of the linear DNA fragment. (B) Southern blot analysis of PstI-digested chromosomal DNA from strain 
GF76 (lane 1) and A16 (lane 2). A 1.0-kb EcoRI-HindIII fragment, identical to the 5' region of the AMO structural gene, was used as a probe. 
(C) Western blot analysis of subcellular fractions of strain A16 (lanes 1 and 2) and GF96 (lanes 3 and 4). Cytosolic fractions (lanes 1 and 3) and 
organellar fractions (lanes 2 and 4) were obtained after differential centrifugation of homogenized protoplasts. 20/tg protein was loaded in each lane. 
Antibodies against alcohol oxidase (AO; upper panel) and AMO (lower panel) were used. 

catalase [25] or H. polymorpha alcohol oxidase [26] were fused 
to reporter proteins. These results imply that proper recogni- 
tion o fa  PTS (either PTS1 or PTS2) is dependent on the confor- 
mational  context. 

The PTS2 import machinery appears to be conserved in 
H. polymorpha. Not only have other, endogenous proteins 
containing a PTS2 been identified, e.g. Per lp  [21] and Per6p 
(M. Tuijl, unpublished), but  heterologous PTS2 proteins, like 
watermelon malate dehydrogenase [27] and S. cerevisiae thio- 
lase [13], are normally sorted when they are expressed in this 
organism. In addition, the PTS2 import pathway in H. polymor- 
pha appears to be inducible by amine substrates [13]. 

The specificity of the import components to recognize the 
PTS2 is probably strongly organism dependent. For  instance, 
H. polymorpha AMO or T. brucei aldolase are not  sorted to S. 
cerevisiae peroxisomes [2,28]. Both proteins contain a sequence 
which is slightly aberrant  from the PTS2 consensus, RL-Xs-QA 
or RV-Xs-HL, which might cause the mislocation in S. cerevis- 
iae. Actually, muta t ion analysis of the PTS2 sequence of S. 
cerevisiae thiolase confirmed that the RL-to-RV substitution in 
the PTS sequence results in a cytosolic location of the mutant  
protein [7]. 
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