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Abstract We isolated the m a s  proto-oncogene from a mouse 
genomic library. Sequence analysis showed that it contains an 
open reading frame without intervening sequences. The amino 
acid sequence deduced confirms the seven-transmembrane- 
domain structure and exhibits 97% and 91% amino acid homol- 
ogy with the rat and the human Mas, respectively. In mice and 
rats, m a s  mRNA was detected in the testis, kidney, heart, and in 
the brain regions: hippocampus, forebrain, piriform cortex, and 
olfactory bulb. Testicular m a s  mRNA from rats increases mark- 
edly during development, while cerebellar mRNA is high postna- 
tally but completely disappears at later stages. We conclude that 
the product of the mouse m a s  gene may be involved in the devel- 
opment of the brain and testis. 
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I. Introduction 

The mas oncogene was detected by an in vivo tumorigenicity 
assay applying NIH 3T3 cells and nude mice [1 3]. The initia- 
tion of the mas gene's oncogenic potential occurs during trans- 
fection and is due to a rearrangement in the 5'-flanking region. 
Moreover, the human mas gene was localized within a region 
on the long arm of chromosome 6, which is often rearranged 
in malignant cells [4]. The normal, not rearranged human mas 
gene, however, exhibits only weak transforming activity. The 
mas gene codes for a protein with seven potential transmem- 
brane domains and may therefore induce malignant growth 
through signal transduction pathways like other membrane 
associated oncoproteins [5]. It exhibits sequence similarity to a 
family of sensory receptors, including the opsins [6] and the 
adrenergic, muscarinergic, and substance K receptors [7], with 
highest homology to the mas-related gene (mrg) [8] and the rat 
thoracic aorta (RTA) gene [9]. 

Jackson et al. [10] suggested that the Mas protein represents 
a G-protein-coupled receptor for angiotensins. They were able 
to show that angiotensin (ANG) II and III can initiate [3H]thy- 
midine incorporation in mas-expressing cells [11]. Additionally, 
in neuronal cells stably transfected with the human mas onco- 
gene, an accumulation of inositol phosphates and the mobiliza- 
tion of intracellular Ca 2÷ after stimulation with ANG II and 
ANG III were observed [11,12]. A comparable response was 
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demonstrated for mas-transfected COS-7 cells [13]. The activa- 
tion of an inward current by ANG in mas-injected oocytes [11], 
however, was not inhibited by the ANG antagonists 
[Sarl,Val5,AIaS]-ANG II and [Sarl,VaI5]-ANG II [14]. There- 
fore, doubts have arisen as to whether the Mas protein really 
is an ANG |1 receptor, particularly since binding of ANG to 
mas-transfected cells has never been shown. In addition, the 
major ANG II receptors, AT1 and AT 2 have recently been 
cloned [15-18], exhibiting only 8% and 19% amino acid identity, 
respectively, to the Mas protein. 

mas transcripts were found in the human and rat brain 
[10,19] with highest amounts in the hippocampus and lower 
amounts in the cortex and cerebellum. In situ hybridization in 
rat brain using radiolabeled mas cRNA probes showed selec- 
tive expression in the forebrain and specifically in parts of the 
limbic system (dentate gyrus, the CA3 and CA4 areas of the 
hippocampus), the piriform cortex, and the olfactory bulb 
[20,21]. As it could be shown that mas expression is regulated 
during development [21] and by neuronal activity [22] in the rat 
hippocampus, it may contribute to the plasticity of this part of 
the brain. 

The apparent tissue-specific gene expression, its possible re- 
lationship to the renin-angiotensin system (RAS), and its onco- 
genic properties make the Mas protein a particularly interesting 
molecule. In this study, we report the clonihg and molecular 
characterization of the mouse mas gene, which has recently 
been mapped to chromosome 17 [23,24]. We provide a detailed 
analysis of its DNA structure and RNA distribution in rats and 
mice with respect to tissue-specificity, developmental control, 
and relationship to hypertension and sexual maturation de- 
monstrating for the first time that there are additional sites of 
mas expression in rodents besides the brain. 

2. Materials and methods 

2.1. Animals 
Nine-week-old BALB/c and NMRI mice as well as Wistar-Kyoto 

rats of different ages were used for the expression analysis. Animals had 
free access to food and water and were kept in alternating 12 h light 
and dark cycles. 

2.2. Bacteriophage library screening 
Recombinant phages of a genomic DNA library of BALB/c mice 

were amplified on E. coil strain LE 392 by the plate lysate method and 
blotted onto nylon membranes by the method of Benton and Davis 
[25,26]. 1.2 x 1 0  6 recombinant phages were analysed with a human mas 
1.3-kb BamHIlNsiI genomic fragment [27]. The DNA probe was la- 
beled by the random priming method using [c~-32p]dCTP and Klenow 
enzyme [28,29]. Hybridization with 1 x 106 cpm of the original probe 
was carried out overnight at 65°C in a solution containing 5 x SSC, 
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5 x Denhardts, 1% SDS, and 250,ug salmon sperm DNA per ml. After 
hybridization, the filters were washed once for 5 min in 2 x SSC/0.1% 
SDS at 20°C, twice at 65°C for 15 min in the same solution, and finally 
in 1 x SSC/0.1% SDS for 10 min. Filters were dried and exposed to 
X-ray film. Positive plaques were isolated and rescreened as described 
above until pure preparations were obtained. 

2.3. Restrict ion and D N A  sequence analysis 
DNA samples were digested with various restriction enzymes under 

single and double digestion conditions and were run through a 0.9% 
agarose gel using pulsed-field electrophoresis. Ethidium bromide- 
stained gels were photographed under UV-light and the DNA was 
blotted onto nylon filters as described by Southern [30]. Hybridization 
was carried out with the labeled human mas cDNA fragment as de- 
scribed above. Appropriate restriction fragments were isolated from 
1% agarose gels and subcloned into the Bluescript II SK ÷ vector 
(Stratagene, Heidelberg, Germany). After progressive digests with ex- 
onuclease III, DNA sequences were determined in both orientations by 
the dideoxynucleotide chain termination method [31] using primers 
complementary to the T3 and T7 promotor sequences and a modified 
form of T7 DNA polymerase [32]. 

2.4. R N a s e  protect ion assay 
Total RNA from tissues was isolated by homogenization in lithium 

chloride and urea by the method of Auffray and Rougeon [33]. A 
315-bp mouse mas genomic DNA fragment, representing positions 
(-165) (+150) relative to the translation start site, and a 615-bp rat mas 
cDNA fragment (position 258 873) were subcloned into the polylinker 
sites of vector Bluescript II SK + and pGEM4 (Promega, Atlanta), 
respectively, which are flanked by promoters for RNA polymerases. 
Before transcription the rat mas cDNA vector was cut with N c o l  (posi- 
tion 600) yielding a 273-bp transcription product. The resulting plas- 
mids were used for in vitro transcription in the presence of [~-32p]UTP 
[34], as was a 150-bp Sal I /XbaI  rat fl-actin cDNA subcloned into 
Bluescript SK ÷ vector. RNase protection assays were performed ac- 
cording to Mullins et al. [35]. 

2.5. ln-si tu hybridization 
The RNA probes were synthesized using the 315-bp mouse mas 

genomic DNA fragment described above. Antisense and sense RNAs 
were labelled with [~-35S]UTP using T3 and T7 polymerases, respec- 
tively. Hybridization conditions were the same as for the rat mas gene 
[20]. 

3. Results and discussion 

Cloning and sequence analysis of  the mouse m a s  proto-onco- 
gene were performed to study the evolution of  the gene family, 
to provide tools to clarify the control mechanisms of  m a s  ex- 
pression in the mouse, and to reveal its function by gene target- 
ing experiments. 1.2 x 106 recombinants were screened by hy- 
bridization of  a BALB/c genomic library with a full-length 
human m a s  DNA.  Four  recombinant  phages were isolated. 
Restriction mapping was carried out with a set of  restriction 
enzymes and revealed that each of  the lambda clones contains 
the entire coding region of  the mouse m a s  proto-oncogene (Fig. 
1A). Using exonuclease-digested fragments and synthetic ol- 
igonucleotides, D N A  sequencing was performed in both orien- 
tations on genomic subclones. The mouse m a s  gene contains a 
single continuous reading frame of  972 nucleotides which is not  
interrupted by an intron as it is also the case for other G- 
protein-coupled receptors, e.g. adrenergic, muscarinergic, sero- 
tonin, A N G  II, and bradykinin receptors [36]. Fig. 1B shows 
the amino acid sequence of  the mouse Mas protein predicted 
by the nucleotide analysis in comparison with the human and 
rat proteins. The mouse Mas protein shares 97% and 91% 
amino acid homology with the rat and the human Mas respec- 
tively. The mouse and rat sequences code for a protein with 324 
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Fig. 1. Structure and sequence of the mouse mas gene. (A) Restriction 
map of mouse mas genomic DNA. The sequence representing the cod- 
ing region of the gene is indicated by the box. The positions of relevant 
restriction sites are depicted as follows: B, BamHI;  Bg, BglII; E, EcoRI;  
K,  KpnI; S, SacI; X ,  XbaI .  (B) Alignment of the amino acid sequences 
of the mouse (M-mas), rat (R-mas), and human Mas (H-mas) protein. 
Dots indicate amino acids identical with the mouse Mas sequence. The 
dashes at position 11 indicate the insertion of the amino acid valine in 
the human Mas. The DNA sequence of the mouse mas gene has been 
assigned the accession number X67735 in the EMBL data library. 

amino acid residues, whereas the human Mas protein contains 
325 amino acid residues; an additional valine is inserted at 
position 11 of  the human protein. The greatest divergence be- 
tween mouse and human Mas protein exists in the aminotermi- 
nal hydrophilic domain, with an identity of  only 48%. The 
highest homology resides within the seven transmembrane re- 
gions and the first and second cytoplasmic loops, which is a 
common feature of  related receptors having seven transmem- 
brane domains, e.g. the adrenergic and substance K receptors 
[37,38]. The aminoterminal  parts of  the Mas proteins, which in 
other receptors of  this family bind the ligand, are well con- 
served in their hydrophobic amino acid residues, suggesting the 
interaction with a similar molecule. Several potential glycosyla- 
tion sites near the amino terminus and at position 271 in the 
predicted Mas protein sequence are identical or similar for 
mouse, rat, and man [1,39]. Like the other Mas proteins, also 
the mouse Mas protein lacks a signal sequence at the amino 
terminus and may therefore be integrated spontaneously into 
the membrane on the basis of  its hydrophobicity [40]. 

So far, m a s  m R N A  had only been detected in the brain. 
RNase  protection assays were performed to detect m a s  m R N A  
in various mouse tissues. As probe, we used a 32p-labeled mouse 
m a s  c R N A  with a total length of  315 nucleotides, which is 
complementary to the 5'-end of  the m a s  coding sequence. Fig. 
2A shows the tissue distribution of  m a s  transcripts in BALB/c 
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Fig. 2. mas mRNA in tissues of BALB/c and NMRI mice. (A) RNase protection assay. Samples of 100/lg of total RNA from brain (BR), kidney 
(KI), liver (LI), spleen (SP), submandibular gland (SG), heart (HT), ovary (OV), forebrain (FB), medulla oblongata (ME), and total brain (BR), 50/lg 
from testis (TE) and 100 gig tRNA (tR) were analysed by RNase-protection assay and loaded on the gel together with 2000 cpm of the undigested 
probe (P) and the molecular weight marker, 32P-labeled pUC19 cut with S a u 3 A  (M). The probe (P), a 32P-labeled 370-nucleotide cRNA containing 
315 nucleotides of the mouse mas gene is shortened to a protected fragment of about 200 nucleotides complementary to mas mRNA. (B-D) In situ 
hybridization of brain sections. Hybridization was performed using the same 370-nucleotide fragment labeled with [35S]UTP in antisense orientation 
on sections of frontal cortex (B), piriform cortex (C), and hippocampus (D). Hybridization signals appear as dark grains over neurons in the anterior 
olfactory nucleus (AON), the piriform cortex (PIR), and the CA cells (CAI, 2 and 3) of the dentate gyrus (DG) within the hippocampus (HI). 

and N M R I  mouse strains. Analysis of  total R N A  from peri- 
pheral tissues shows abundant  expression in the testis and 
detectable amounts  o f  m a s  m R N A  in the kidney and heart. In 
the liver, the spleen, the submandibular  gland and the ovary, 

m a s  m R N A  could not be detected. The m a s  gene is, however, 
predominantly expressed in the brain and particularly in the 
forebrain. In addition, the medulla oblongata contains low 
amounts  of  m a s  m R N A .  
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Fig. 3. Regulation of mas mRNA in organs of WKY rats during ontogeny. (A) Tissue survey. Animals were tested at different ages: postnatal stage 
(6 days), pubertal stage (10 weeks), and adult stage (6 months). By RNase-protection assay using a rat mas-specific probe (P), 100 ¢tg of total RNA 
were analyzed of each of the following organs: liver (LI), heart (HT), kidney (KI), adrenal gland (AG), forebrain (FB), and cerebellum (CB); 50 ¢tg 
total RNA were used from testis (TE) and 100/tg tRNA (tR). (B) Testis. 100 ¢tg total testis RNA of WKY rats between 1 and 30 weeks of age were 
analysed by RNase-protection assay. Ph rat fl-actin (rflAct) cRNA; P2: rat mas (rmas) probe. 

In situ hybridization allowed a more precise localization of  
the mas  m R N A  in the brain of  N M R I  mice (Fig. 2B-D).  In 
agreement with the RNase  protection assay, the highest levels 
of  mas  m R N A  were observed in the forebrain and in areas of  
the hippocampus and cerebral cortex. The dentate gyrus, the 

CA3, CA2, and CAI  area of  the gyrus hippocampi,  the olfac- 
tory tubercle, the piriform cortex, and the olfactory bulb in 
particular are highly stained. A widespread distribution of  mas  

m R N A  was seen in the cortical areas, including the central 
cortex and the neocortex, while it was not  detectable in the 
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medulla oblongata by in situ hybridization. Most of these areas 
are identically stained in mouse and rat, except for the CA 
regions: only CA2 and CA3 are stained in rat, while all three 
CA areas showed signals in mice. This distribution pattern in 
the brain differs substantially from that of [~2SI]ANG II-binding 
sites. The highest densities for ANG II receptors have been 
found in the subfornical organ, several hypothalamic nuclei, 
including the nucleus of the solitary tract, the locus coeruleus, 
and the inferior olive [41,42]. On the cellular level, m a s  tran- 
scripts were confined to neuronal cells (data not shown). 

The ontogeny of m a s  expression in rats and its relationship 
to hypertension was examined by RNase protection assays, m a s  

mRNA tissue distribution in postnatal, pubertal, and adult 
stages of WKY rats was compared (Fig. 3A). In the postnatal 
brains, high signals were found in the forebrain and in the 
cerebellum. The signal in the forebrain remains high through- 
out development, while m a s  mRNA expression decreased dur- 
ing ontogeny in the cerebellum. These data are consistent with 
the findings of Martin et al. [21]. m a s  mRNA in the kidney and 
heart is present in young rats, but hardly detectable in adult 
animals. Of particular interest in this respect were the findings 
in the testis (Fig. 3B). m a s  transcripts were low after birth but 
increased at 5 weeks reaching their highest expression levels at 
15 weeks of age. Similar to the expression in the forebrain, m a s  

mRNA concentrations in testis then remained stable. Puberty, 
with its rise of testosterone, starts in rats at an age of 8 weeks 
[43], indicating that m a s  mRNA expression is not directly tes- 
tosterone-dependent, as raised m a s  levels are already observed 
at an age of 5 weeks. With this expression pattern m a s  joins a 
growing family of proto-oncogenes expressed differentially 
during spermatogenesis in the testis [44]. The differential regu- 
lation of m a s  gene expression in peripheral organs during onto- 
geny suggests an important but up to now unknown function. 

With respect to a possible role in cardiovascular regulation, 
we performed a detailed expression analysis of the m a s  gene in 
rats with and without hypertension (data not shown). Sponta- 
neously hypertensive rats (SHRSP) and transgenic rats carrying 
the mouse R e n - 2  gene, TGR(mREN2)27 [35], exhibited only 
slightly higher amounts of m a s  transcripts in the forebrain, 
kidney, and testis, but were identical in m a s  gene expression in 
all other tissues compared to the normotensive Sprague- 
Dawley rats. This makes a direct involvement of the Mas pro- 
tein in blood pressure control rather unlikely without excluding 
long term modulating effects. 

In conclusion, m a s  is clearly distinct with respect to DNA- 
sequence and tissue distribution of its mRNA from the typical 
ANG II receptors of the AT~ subtype that mediates aldosterone 
secretion, vasoconstriction, and Na + retention, thereby increas- 
ing blood pressure, and of the AT2 subtype with up to now 
unknown functions. In addition, Mas has never been shown to 
bind angiotensins and its tissue distribution, particularly in the 
brain, is quite different from the described binding sites. Taken 
together, these data indicate that Mas does not represent a 
typical ANG receptor. It has been proposed that Mas may have 
modulatory functions by interfering with the second messenger 
pathway systems used also by ANG II receptors that could lead 
to enhanced responsiveness of m a s - t r a n s f e c t e d  cells to ANG II 
via the endogenous receptor [45]. Recent results showing the 
conversion of a hypertrophogenic to a proliferative effect of 
ANG II on kidney proximal tubular cells by m a s - t r a n s f e c t i o n  

without change in ANG II binding characteristics corroborate 

this hypothesis [46]. Furthermore, the m r g  exhibited an interac- 
tion with the ANG II signalling system in X e n o p u s  oocytes [8]. 

The still elusive physiological function of Mas may be con- 
nected to the development and plasticity of the brain, as sug- 
gested by its influence on cell growth and its differential expres- 
sion pattern during development and activity of this organ 
[21,22]. In addition, it may be important in the development of 
the testis. The availability of genomic mouse m a s  DNA makes 
further study of its function possible by transfecting it into 
tissue culture cells or ablating its expression by gene targeting 
in transgenic animals. 
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