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Abstract The 3'-CCA end of tRNA Phe from Escherichia coli and Thermus thermophilus was changed to AAA, CCC, UUU and UUA by the step- 
wise degradation procedure of the 3'-CCA end of tRNA Ph° followed by the ligation with oligoribotrinucleotides. Substrate activity of tRNA~h~, and 
tRNA~h~ in tRNA aminoacylation was shown, tRNA,~h~, is a bad substrate for E. coli and Th. thermophilus phenylalanyl-tRNA synthetases. 

Phe tRNAutm has no detectable activity in tRNA aminoacylation. Therefore the nature of the Y-end of tRNA Phe plays an important role in tRNA binding 
and its substrate efficiency. Nevertheless the CCA sequence at the 3'-end of tRNA Phe does not seem to be an absolute requirement for tRNA 
aminoacylation. 

Key words: t R N A  recognition; 3 ' -CCA end; Mechanism of  t R N A  aminoacylation 

1. Introduction 

The role of  the 3'-terminal C C A  sequence, common to all 
t R N A s  in the interaction of  t R N A s  with their specific ami- 
noacy l - tRNA synthetases, was investigated earlier [1]. The data  
confirm that the completeness of  the CCA-end is an absolute 
requirement for aminoacylat ion o f  tRNA.  t R N A s  of  different 
species shortened by one and more 3'-terminal nucleotides were 
shown to lose their acceptor activity. 

As to the identity of  nucleotides 76, 75 and 74 and their 
importance for substrate efficiency of  t R N A  some limited and 
contradictory data have been published ([1] and refs. therein). 
The conservative replacement of  cytidines by uridines did not  
deactivate E. coli t R N A  Tyr and t R N A  Arg but completely abol- 
ished aminoacylat ion activity of  E. coli t R N A  fMet. Yeast 
t R N A  Phe with a 3 ' -CCC end could not be aminoacylated and 
there was no additional information on the interaction of  this 
t R N A  with the enzyme [1]. 

During the last decade this part of  the t R N A  molecule has 
not  been a subject of  the intensive study. The high-resolution 
crystal structures of  two complexes, the E. coli glutaminyl sys- 
tem and the yeast aspartyl system, are now known [2]. A com- 
mon feature of  both complexes is that the acceptor stem end 
of  t R N A s  undergoes large conformational  changes. Recently 
natural mutants of  t R N A  His ( tRNAtj~,)  f rom Salmonella ty- 

t R N A  ~ (tRNA~cA, tRNAAcA) from E. coli have phimurium and Va~ Va~ Va~ 

been isolated and their functional activity in the translation 
system has been shown [3]. Therefore tRNAs  with mutations 
at the CCA-end exist in vivo. 

In the present work we have investigated in detail the contri- 
bution of  the 3 ' -CCA end to the specific interaction of  E. coli 
and Th. thermophilus tRNAPhes with their homologous phen- 
y la lanyl- tRNA synthetases. The mutations were introduced 
into the 3 ' -CCA end and kinetic parameters of  t R N A  Ph¢ mu- 
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Abbreviatons: FRS, phenylalanyl-tRNA synthetase (E.C. 6.1.1.20.); 
tRNA Phi, transfer ribonucleic acid specific to phenylalanine; DTT, 
dithiothreithol; DS-Na, sodium dodecyl-sulfate. 

tants (Km, Vmax and their ratio) were evaluated in respect to 
t R N A  aminoacylation. 

2. Materials and methods 

E. coli alkaline phosphatase was purchased from 'Fermentas' (Lithu- 
ania). E. coli tRNA Ph° was from Boehringer Mannheim. DTT was from 
Fluka, sodium periodate was from Sigma, HEPES, Tris, ATP, DS-Na, 
acrylamide and N,N'-methylenbisacrylamide were from Serva. Other 
reagents were of analytical grade. L-[14C]Phenylalanine (360 mCi/mmol) 
was from UVVR, L-phenyl-[2,3-3H]alanine (25,000 mCi/nmol) was 
from Isotop, St. Petersburg. 

tRNA Phe from Th. thermophilus was purified as described earlier [4]. 
FRS from E. coli and Th. thermophilus were purified [5,6]. Oligoribonu- 
cleotides pCpCpA and pUpUpA were synthesized using the H-phos- 
phonate procedure [7] followed by phosphorylation [8]. Oligoribonucle- 
otides (pA)3, (pC)3 and (PU)3 were prepared by hydrolysis of the 
corresponding polyribonucleotides by a snake venom phosphodiesterase 
according to the procedure of Mudrakovskaya and Yamkovoy [9]. T4 
RNA ligase was purified from E. coli B infected by bacteriophage T4 
amN82 according to the procedure described earlier [10]. 

The stepwise degradation of tRNA Phe from the T-end was performed 
[11]. tRNA was isolated after every cycle by chromatography on 
DEAE-cellulose [12]. The attachment of trinucleotides: pCpCpA, 
pUpUpA, (PU)3, (pC)3, (pA)3, to tRNA Ph° shortened by the 3'-CCA end 
was performed with T4 RNA ligase according to the procedure de- 
scribed in [11] with some modifications. The products were separated 
by electrophoresis on a polyacrylamide gel in the presence of urea. 
tRNA Phe was isolated from the gel by 0.1% DS-Na in 0.3 M sodium 
acetate. Acceptor activity of tRNA Phe ligated with CCA was determined 
to be equal to 1600-1700 pmol/A260. This sample was used as a control 
for various tRNA Phe mutants, tRNA Phe aminoacylation was carried out 
as described earlier [13]. K m and Vm, x values were evaluated by the Enz 
Fitter program. The standard errors were within 10% of the indicated 
values. 

3. Results and discussion 

The essential steps for the preparation of  a t R N A  Phe modified 
at the 3 ' -CCA-end were the removal of  three nucleotides and 
ligation of  the shortened t R N A  abe with trinucleotides. Th. ther- 
mophilus and E. coil t R N A  Phe were shortened through three 
cycles, each consisting of  the oxidation of  the 3'-end ribose by 
periodate, the cleavage of  the oxidized nucleoside in an aniline- 
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Table 1 
Aminoacylation 
n u s  

properties of tRNAPh°s modified at the 3'-CCA-termi- 

tRNA Km V~max VmJK*m 
(gM) (rel.) (rel.) 

E. coli 

tRNA-CCA 0.60 1.0 1.0 
tRNA-UUA 1.3 0.25 0.12 
tRNA-CCC 1.6 0.015 0.0056 
tRNA-AAA < 0.0001 
tRNA-UUU not aminoacylable 

Th. thermophilus 

tRNA-CCA 0.30 1.0 1.0 
tRNA-UUA 0.98 0.40 0.12 
tRNA-CCC 1.5 0.035 0.0070 
tRNA-AAA < 0.0001 
tRNA-UUU not aminoacylable 

* Vm,x and Vm~xlKm are normalized to the control tRNA which was 
restored by ligation of pCCA to tRNA Phe, shortened stepwise by three 
nucleotides. 

catalyzed reaction, and finally, the removal of the Y-phosphate. 
tRNA was isolated after every cycle by chromatography on 
DEAE-cellulose to separate the product of incomplete 
dephosphorylation. The attachment of trinucleotide (pCpCpA, 
pUpUpA,  (pU)3, (pC)3, (pA)3) to shortened tRNA phe was per- 
formed with T4 R N A  ligase, tRNA of the native length was 
isolated electrophoretically on a denaturat ing 8% poly- 
acrylamide gel. 

Kin, Vmax values and their ratio obtained for modified 
tRNA Phe in tRNA aminoacylation catalyzed with Th. thermo- 
philus and E. coli FRS are presented in Table 1. tRNAs with 
a conservative change of cytidines 75 and 74 to uridines are 
substrates for both E. coli and Th. thermophilus FRS. They 
exhibit 2- to 3-fold increase in Km value and 2.5 to 4-fold 
decrease in Vmax resulting in one order of magnitude decrease 
in the Vmax/Km ratio as compared with the native tRNA. tRNAs 
having adenosines instead of cytidines are very poor if any 
substrates for both enzymes. When the terminal nucleotide in 
t R N A  with the Y-UUA end was changed to uridine, no detect- 
able t R N A  aminoacylation was observed for both E. coli and 
Th. thermophilus FRS. When the adenosine 76 was changed on 

tRNAccc exhibits the substrate activity in both sys- cytidine, Phe 
terns. However tRNAPh~ demonstrates the significant change in 
parameters (Kin and Vmax (Table l) with predominant  influence 
on the catalytic rate of tRNA aminoacylation. 

Earlier we studied the effect of  the acceptor end change of 
E. coli tRNA Phe on its interaction with FRS [14]. The removal 
of the Y-terminal adenosine decreased the tRNA affinity to the 

enzyme by one order of magnitude. A further stepwise degrada- 
tion of tRNA Phe did not result in an additional decrease in its 
affinity. Therefore the Y-terminal adenosine provides the cru- 
cial contribution to the tRNA binding to the enzyme. The 
replacement of A76 by 1,N6-ethenoadenosine abolished the 
substrate activity and decreased the affinity 4-fold as compared 
to the native t R N A  [14]. Yeast t R N A  Phe modified in such a way 
has been shown to be unchargeable [11]. The data suggest a 
significant influence on tRNA Phe substrate activity by modifica- 
tion of the T-terminal  adenosine of tRNA Phe. 

Nevertheless tRNAPh~ and t R N A P ~  exhibit substrate ac- 
tivity in tRNA aminoacylation catalyzed by FRS from E. coli 
or Thermus thermophilus. Therefore the Y-CCA end sequence 
of tRNA Phe has no unique requirement for tRNA aminoacyla- 
tion and tRNAPhes with a modified Y-end are substrates for 
phenylalanyl- tRNA synthetases. 
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