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Abstract 
When incubated under anoxic conditions, cultured neonatal cardiomyocytes undergo cell necrosis. Simvastatin-sodium, the bioactive metabolite 

of simvastatin (a potent serum cholesterol-lowering drug), delayed the anoxia-induced myocyte necrosis in a dose-dependent manner. This beneficial 
effect of simvastatin-sodium could not be attributed to its cholesterol-lowering properties. We found that simvastatin-sodium, at concentrations of 
20 and 50pM, attenuated the rise in intracellular Ca2’ concentration ([Ca2+]J measured with Fura- in anoxic cardiomyocytes. In a test of sarcolemmal 
Na’/Ca*’ exchange activity, simvastatin-sodium attenuated the rise of [Ca”], upon incubation in sodium-free buffer, which normally causes a reversal 
of Na+/Ca2+ exchange and cellular calcium overload. The inhibitory action of simvastatin-sodium on the sarcolemmal Na+/Ca*+ exchanger could well 
explain the cardioprotective effect of the drug on myocytes subjected to anoxia. 
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1. Introduction 2. Material and methods 

Simvastatin-sodium, the bioactive metabolite of 
simvastatin, is an inhibitor of the rate-determining en- 
zyme in the biosynthesis of cholesterol, /I-hydroxy-p- 
methylglutaryl-coenzyme A (HMG-CoA) reductase, and 
is used as an anti-hyperlipidemic drug in humans [1,2]. 
In addition, inhibitors of HMG-CoA reductase have 
been used experimentally to lower cellular cholesterol 
content of cultured cells [3]. 

Earlier, we reported that modulation of cellular 
cholesterol content of cultured cardiomyocytes using li- 
posomes altered the tolerance to anoxia [4,5]. Recently, 
we employed simvastatin-sodium in an attempt to dimin- 
ish cellular cholesterol content. We found that simvas- 
tatin-sodium had a protective effect on cardiomyocytes 
during anoxia that could not be attributed to its cholest- 
erol-lowering capabilities. The simvastatin-sodium-in- 
duced delay of cell death during anoxia was associated 
with an attenuation of the rise of the intracellular Ca*’ 
concentration in cardiomyocytes. To elucidate the mech- 
anism responsible for the beneficial effects of simvas- 
tatin-sodium on anoxic myocytes, we investigated 
whether simvastatin-sodium affects the Na+/Ca*+-ex- 
changer. The Na’/Ca*’ exchanger is considered to be 
responsible, at least in part, for intracellular Ca*+ over- 
load during anoxia [6,7]. 

*Corresponding author. Fax: (31) (71) 226 567. 

2.1. Neonatal cardiomyocytes 
Two-day-old rats were anesthetized with diethylether. Their hearts 

were excised and the ventricles dissociated using collagenase as the 
dissociating enzyme [8]. Cultures were grown for 3 days in a culture 
medium containing Ham’s F-10 (Flow) with 10% fetal calf serum 
(Flow) and 10% horse serum (Flow) on plastic Petri dishes (diameter 
30 mm, primaria coated; Falcon) and maintained at 37°C in a humid- 
ified incubator with an atmosphere of 95% air and 5% CO*. Culture 
medium was refreshed after 4 h and after 48 h. At the third day after 
plating the cells had formed a monolayer and were used for the exper- 
iments. Intracellular calcium ion concentration ([Ca*+],) was measured 
in cultures grown on glass coverslips (10 x 32 mm) coated with laminin 
(G&co) in a plastic Petri dish. 

2.2. Simvastatin-sodium 
The bioactive metabolite of simvastatin (Zocor; Merck, Sharp & 

Dohme) was formed in vitro by heating (60°C) a 1 mM solution of 
simvastatin in 0.1 N NaOH for 1 h [9]. The resulting 1 mM solution 
of simvastatin-sodium was brought to pH 7.5 with 12 N HCl. 

2.3. Anoxic incubation 
Cultures were preincubated in a balanced salt solution (BSS) which 

contained (in mM): NaCl 140, KC1 4.0, CaCl, 2.5, MgSO, 1.2, KH,PO, 
0.44, Na,HPO, 0.34, NaHCO, 21; sodium pyruvate 5; pH 7.4, for 1 h 
(37”C, 95% sir/5% COJ. Then the medium was poured off and replaced 
by BSS equilibrated for at least 1 h with 95% NJ5% CO1 (resulting in 
a pOz < 5 mmHg). Eight dishes at a time were placed in an anoxic 
incubation chamber with a continuous gas flow of 95% N,/5% CO? at 
37°C. 

2.4. Cell death 
At indicated time points during the anoxic incubations, aliquots of 

the medium were taken to measure lactate dehydrogenase (LDH) activ- 
ity released by the cells. After anoxic incubation the medium was re- 
moved, and the cardiomyocytes were taken up in 1.0 ml ice-cold Tris 
buffer (10 mM, pH 7.4). The cells were homogenized in a glass Potter- 
Elvehjem homogenizer and then sonicated for 1 min at 30 W (Branson 
Sonic Power Co.). Medium and cellular homogenate were analyzed for 
LDH activity using a spectrophotometric assay (Boehringer 543047). 
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The release of LDH during metabolic inhibition was expressed as the 
percentage of total (pre-anoxic) cellular LDH. 

2.5. [CcIcIi measurement 
Confluent myocyte cultures grown on glass coverslips were rinsed 

with a HEPES-buffered salt solution (HBSS) containing (in mM): NaCl 
125, KC1 5.0, CaCl, 2.5, MgS04 1, KH,PO, 1, NaHCO, 10, HEPES 
10, glucose 5, probenecid 2.5; pH 7.4. The cells were loaded in HBSS 
containing 2 ,uM Fura-2/AM (Molecular Probes) for 60 min at 37°C 
[IO]. Subsequently, the coverslips with the cells were washed twice in 
HBSS and fitted in a cuvette in a spectrofluorometer (Perkin-Elmer 
LS-3) equipped with a thermostated cuvette holder (37°C). The fluores- 
cence of Fura-2-loaded cells was measured at 340 and 380 nm excitation 
wavelengths and 490 nm emission wavelength. The ratio of the fluores- 
cence intensities measured at excitation wavelengths 340 nm and 
380 nm, &J&s,, provides an index for [Ca”], [1 11. As the numerous 
problems concerning the calibration of Fura- have not been resolved, 
we have chosen not to express the ratio values in nM Ca” concentra- 
tion. Instead, the F&F,,, ratio values during the experiments were 
expressed as a percentage increase compared to the control value at the 
start of the experiment. 

2.6. Na’lCrz’ exchanger 
The activity of the Na’/Ca*’ exchanger was measured by incubating 

the cardiomyocytes in Na’-free HBSS. In this medium, sodium salts 
were replaced by equimolar quantities of choline chloride. Incubation 
in Na’-fee medium causes reversal of the Na’/Ca2’ exchange activity 
[6] leading to a rapid rise in [Ca”],. Using this procedure, the effect of 
simvastatin-sodium or simvastatin on the Na’/Ca” exchanger was in- 
vestigated. 

2.7. Statistics 
All data are presented as mean values + S.E.M. Student’s t-test was 

used for statistical comparison, and corrected for multiple comparison 
(Bonferroni method) when necessary. A P value less than 0.05 was 
considered to indicate a significant difference. 

3. Results and discussion 

The time-courses of LDH release from cultured cardi- 
omyocytes incubated with or without simvastatin-so- 
dium (20 and 50 PM) under anoxic conditions are illus- 
trated in Fig. 1. Simvastatin-sodium delayed LDL re- 
lease, which is more pronounced with 50 PM than with 
20 PM simvastatin-sodium. Table 1 shows that 2 ,uM 
simvastatin-sodium did not alter the time to 50% LDH 
release, as compared to controls, whereas 100 ,uM 
simvastatin-sodium did not prolong the time to 50% 
LDH release any further compared to 50 ,uM simvas- 
tatin-sodium. 

Table 1 
Prolongation (positive values) or shortening (negative values) of the 
time to 50% LDH release from cardiomyocytes during anoxia by the 
presence of simvastatin-sodium, as compared to control cells 

GtLDH,,) 

Concentration simvastatin-sodium (uM) dLDH,,, (min) 

2 -4 f 3.9 
20 30 + 12* 
50 53 f 6.1* 

100 44 f 8.5* 

Mean f S.E.M., n = 5; *P c 0.05 compared to controls (no simvas- 
tatin-sodium). 
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Fig. 1. Timecourses of lactate dehydrogenase (LDH) release from 
cultured neonatal cardiomyocytes incubated under anoxic conditions. 
The activity of LDH release is expressed as a percentage of the LDH 
activities present in the cells at t = 0. l , without simvastatin-sodium; +, 
with 20 ,uM simvastatin-sodium; and n , with 50 PM simvastatin-so- 
dium. Each point represents themean f S.E.M. (n = 5). *P c 0.05 com- 
pared to anoxia without simvastatin-sodium. 

Simvastatin-sodium could exert its protective effect by 
interfering with a variety of factors and pathways in- 
volved in the mechanism of cell death during anoxia [I 21. 
Calcium overload is considered to play an important role 
in the development of irreversible cell damage during 
anoxia [6,7]. Calcium overload can lead to cell death 
through several pathways, including activation of cal- 
cium-dependent phospholipases, proteases and endonu- 
cleases [ 131. Therefore, we have monitored the [Ca”], in 
cultured myocytes during normoxia and anoxia. Under 
normoxic conditions 20 and 50 ,uM simvastatin-sodium 
increased the F3JF380 ratio of Fura- (Fig. 2), which 

0 
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Concentration SN 
Fig. 2. Increase in F,JF,,, values of Fura- measured in normoxic 
cardiomyocytes in the presence of 20 or 50 PM simvastatin-sodium 
(SN). Ratio values are expressed relative to the ratio value measured 
before addition of 0, 20 or 50 ,uM simvastatin-sodium. Indicated are 
mean values f S.E.M. (n = 4). *P < 0.05 compared to controls (no 
simvastatin-sodium). 
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Fig. 3. Increase in FJF380 values of Fura- measured in anoxic cardi- 
omyocytes in the absence (open bars) and presence of 50pM simvastin- 
sodium (solid bars). Ratio values are expressed relative to the ratio 
value measured at t = 0, that is, at the start of anoxia. Indicated are 
mean values f S.E.M. (n = 4). *P < 0.05 compared to anoxia without 
simvastatin-sodium. 

indicates that simvastatin-sodium causes an increase in 
[Ca2+]i. 

In another series of experiments, we assessed the effect 
of 50 ,uM simvastatin-sodium on [Ca*‘]; during anoxia. 
As shown in Fig. 3, the F3dF38o ratio of Fura- was 
increased by 60% after 45 min of anoxia without simvas- 
tatin-sodium, whereas in the presence of 50 ,uM simvas- 
tatin-sodium no significant increase in the F34,jF380 ratio 
was seen after 45 min of anoxia. After 90 min of anoxia, 
the F&F38o ratio had increased by 248% without simvas- 
tatin-sodium, and by 162% in cultures incubated with 50 
PM simvastatin-sodium. Unfortunately, we could not 
measure reliable fluorescence values of Fura-loaded cells 
at time points beyond 90 min of anoxia due to detach- 
ment of the myocytes from the coverslips. However, it is 
clear from Fig. 3 that simvastatin-sodium attenuated the 
increase in [Ca2+li during anoxia. 

Recently, Ziegelstein et al. [6] showed that the antiox- 
idant, dimethylthiourea (DMTU), increased [Ca*‘]i in 
normoxic myocytes but attenuated the rise in [Ca2’li dur- 
ing hypoxia/reoxygenation. In this respect DMTU has 
effects quite similar to those of simvastatin-sodium pre- 
sented in this study. Ziegelstein et al. [6] showed that 
DMTU inhibits the Na’/Ca*’ exchanger in the sar- 
colemma of myocytes. Under normal conditions the 
Na’/Ca2’ exchanger pumps one Ca2’ ion out of the cell 
in exchange for three Na’ ions, driven by the transmem- 
brane Na’ gradient and by the membrane potential [14]. 
During anoxia, membrane depolarization and an in- 
crease in intracellular Na+ concentration favors a rever- 
sal of the direction of the Na’/Ca2’ exchanger [7]. Thus, 
during normoxia, an inhibitor of the Na’/Ca2’ ex- 
changer will increase [Ca’+]i, whereas during anoxia, in- 
hibition of the Na+/Ca” exchange will attenuate the rise 
in [Ca2+]i. To determine whether a compound is capable 
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of inhibiting the Na’/Ca*+ exchanger, Ca” entry through 
the exchanger can be challenged by Na’-free incubation 
while the determination of the F3.JF380 of Fura- reflects 
[Ca2+li. Upon Na’-free incubation of the cardiomy- 
ocytes, the F34dF38o ratio rose immediately, reached its 
maximum value within 2 min, and remained elevated for 
at least 15 min. The effect of simvastatin-sodium on the 
rise of F34dF380 induced by Na+-free incubation is shown 
in Fig. 4. 20 and 50 ,uM simvastatin-sodium attenuated 
the rise in the F3JFsEo ratio to 30 f 5% and 25 & 8% of 
the values in untreated cells, respectively. These findings 
indicate that simvastatin-sodium inhibits the Na’/Ca2’ 
exchanger, which could explain the attenuation by 
simvastatin-sodium of the anoxia-induced rise in [Ca*‘]i, 
thereby delaying cell death. 

Due to the short incubation times used in our experi- 
ments (C 1 h), the effects of simvastatin-sodium can only 
be explained by its acute direct action, as changes in 
cellular cholesterol content by HMG-CoA reductase in- 
hibition take much longer to develop. It is important to 
note that the effects of simvastatin-sodium described in 
the present study are observed at concentrations much 
higher than that reached in plasma of hypercholesterol- 
emit patients who take the anti-hyperlipidemic drug, 
simvastatin [ 151. 

In conclusion, we have shown that simvastatin-sodium 
improves the tolerance of cultured cardiomyocytes to 
anoxia. The protective effect of simvastatin-sodium is 
mediated by its inhibitory effect on the Na’/Ca” ex- 
changer, thereby attenuating the rise in [Ca’+]i during 
anoxia. 
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Fig. 4. Increase in F3dF38,, values of Fura- measured in cardiomy- 
ocytes after 10 min of Na’-free incubation. The change in the F&F,,, 
ratio observed in the absence of simvastatin-sodium (SN) is set at 100% 
(control). The presence of 20 and 50 PM simvastatin-sodium reduced 
the rise of the F34dF380 ratio caused by Na’-free incubation by about 
70%. Means f S.E.M., n = 5; *P < 0.05 compared to controls (no 
simvastatin-sodium). 
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