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Abstract 
Sphingosine-l-phosphate (Sph-l-P), the initial product of Sph catabolism, inhibited chemotactic motility of a few lines of tumor cells [(1992) Proc. 

Natl. Acad. Sci. USA 89, 96861. We now report that Sph-1-P even at very low concentration (10-100 nM) inhibits integrin-dependent motility of 
melanoma cells induced by extracellular matrix (ECM), although it did not affect integrin-dependent adhesion to ECM. Other Sph-related compounds 
tested (including sphinganine-1-P) were much less effective than Sph-1-P at inhibiting motility, and also had no effect on integrin-dependent adhesion 
of tumor cells to ECM. Our findings suggest that Sph-1-P inhibits actin filament reorganization by affecting cytoplasmic connection to integrin in 
ECM-stimulated motility of melanoma cells. 
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1. Introduction 

Migration of tumor cells through basement membrane 
and ECM is considered an essential process for tumor 
invasion and metastasis [l-3]. ECM proteins such as FN 
and LM promote integrin-dependent cell adhesion as 
well as cell motility in vitro [4,5]. Studies of signal 
transduction mechanisms and their control through 
ECM-integrin interactions have led to considerable cur- 
rent interest in the molecular basis of tumor cell invasive- 
ness, which is partially dependent on enhanced haptotac- 
tic motility of tumor cells. Recent studies have indicated 
that sphingolipid breakdown products such as Cer, Sph, 
and their metabolites (e.g. N,N-dimethyl-Sph, Sph-l-P, 
Cer-1 -P) regulate cell growth and differentiation through 
PKC or receptor-associated kinases [68]. Sph-1-P has 
also been reported to be an endogenous modulator of 
intracellular Ca2’ release [9,10] and phosphatidic acid 
synthesis [l 11. Very recently, Sph kinase, which converts 
Sph to Sph-l-P, was shown to be regulated by serum 
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factors and/or PDGF in Swiss 3T3 cells [12], and by 
phorbol ester in Balblc 3T3 A31 cells [13]. In our previ- 
ous studies [14,15], using Boyden chamber Transwell 
assay and phagokinetic assay with gold colloid-coated 
plates, we found that Sph-1-P strongly and specifically 
inhibits conditioned medium- or TPA-induced chemo- 
tactic motility (migration and invasion) and random mo- 
tility of B16/Fl mouse melanoma cells at 10-100 nM 
concentration. In the present study, we examined the 
effect of Sph-1-P on ECM/integrin-dependent haptotac- 
tic motility of Fl cells, and found that Sph-1-P is also a 
strong and specific inhibitor of ECM-integrin-induced 
haptotaxis. 

2. Materials and methods 

2.1. Chemical synthesis of Sph-1-P 
In our previous study, we utilized both enzymatically and chemically 

synthesized Sph-1-P [14,15]. In the present study, we modified our 
chemical synthesis method. Instead of utilizing an acid-stable pivaloyl 
group as before, we utilized benzylbromide as an allylic-OH protection 
agent (Fig. 1). Benzylation of n-erythro-olefinic alcohol and its selective 
deprotection yielded 2-N-Boc-3-O-benzyl-n-erythro-Sph. The primary 
hydroxyl group was then phosphorylated with dibenzyl iV,Ndiisopro- 
pylphosphoramidite [16], with tetrazole as an activating agent, and 
subsequently oxidized in situ with m-chloroperbenzoic acid. Finally, 
sequential deprotection successfully yielded n-erythro-Sph-1-P. Struc- 
tural elucidation (NMR and FAB-MS) and biological activities of the 
newly synthesized compound were identical to those reported previ- 
ously [15,17]. 

2.2. Other Sph derivatives, and chemicals 
Sph, TMS, and DMS were synthesized as previously described 
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[18,19]. Dihydro Sph-1-P (sphinganine-1-P) was synthesized as de- 
scribed by Weiss [20]. C2-Cer (N-acetyl Sph) and CI-Cer (N-octanoyl 
Sph) were synthesized as described by Vunnam and Radin [21]. These 
preparations were free of endotoxin as determined by Limulus ame- 
bocyte lysate assay kit (sensitivity limit, 0.125 nglml; Associates of Cape 
Cod, Woods Hole, MA). All lipid samples except CI-Cer were dis- 
solved in ethanol/water (1:l) as a 1 or 2 mM stock solution. CI-Cer was 
solubilized in ethanol. These samples were incubated in a water bath 
warmed to 56°C before use, then appropriately diluted in culture me- 
dium containing 2% FCS. Control experiments were performed with 
ethanol (0.1% or below) as vehicle, which did not affect haptotactic 
motility. 

LM and RGDS (arginylglycylasparatylserine) peptide were pur- 
chased from Sinma Chemical Co., St. Louis, MO. Matrigel was from 
Collaborative Research, Bedford, MA. FN and FNR were purified in 
our laboratory [22,23]. 

2.3. Cell culture 
B16 melanoma cell variant Fl was obtained from Dr. I.J. Fidler 

(M.D. Anderson Cancer Center, University of Texas, Houston, TX) 
and cultured in DMEM supplemented with 10% FBS (Hyclone, Logan, 
UT), 2 mM L-glutamine, 2 mM pyruvic acid, 4.5 mg/ml o-glucose, 100 
U/ml penicillin G, and 100 &ml streptomycin. 

2.4. Haptotactic cell motility assay 
Haptotaxis was assayed using Transwell chambers (Costar, Cam- 

bridge, MA) with 6.5 mm diameter polycarbonate filters (8 pm pore 
size)-[4]. Briefly, the lower surface of the filter was coated with 25 ~1 
Tris-HCl buffer containing human nlasma FN (5 udfilter). LM (1 
&filter), or Matrigel (1 &titer). The filter was hriei at 3?‘C eve;- 
night. Cells were harvested after brief exposure to 0.05% trypsin and 
0.02% EDTA, and resuspended to a concentration of 4 x 10’ cells/ml 
in DMEM supplemented with 0.1% BSA. 100~1 of the suspension was 
placed in the upper compartment andincubated for 30 min in a CO, 
incubator. 0.6 ml DMEM with 0.1% BSA and the test compound were 
placed in the lower chamber, which was then connected to the upper 
chamber. After CO, incubation for 18 h at 37”C, cells on the lower 
surface of the filter were stained and counted as previously described 
t141. 

2.5. Cell adhesion and cell spreading assay 
Adhesion assay was performed as previously described [23]. Briefly, 

96-well plates were coated with adhesion protein in PBS (100 @ml) at 
37°C for 3 h and then blocked with 1% denatured BSA in PBS (200 
@/ml) at 37°C for 2 h. ‘H-labeled (1 @i/ml, 24 h) Fl cells (5 x lo4 
cells/well) were incubated for 15 min at room temperature with Sph 
derivatives or medium alone, and suspended cells were transferred into 
ECM protein-coated wells and incubated for 30 min at 37°C. Non- 
adherent cells were removed by washing with PBS three times. Adher- 
ent cells were dissolved with 1% SDS in 0.1 NaOH and quantified by 
scintillation counter. 

For spreading assay, 24-well plates were coated with Matrigel (20 
/g/ml) or human plasma FN (2Opglml) in distilled water for 2 h at room 
temp. Fl cells (5 x lo4 cells/ml) were suspended in DMEM with or 
without test compounds. 0.5 ml of the suspension was seeded in the 
coated wells and allowed to adhere at 37°C. After each period of 
incubation, cells were fixed with 4% formaldehyde. Spreading (W) was 
observed under phase contrast microscopy and quantified as [(shadow 
cells)/ (shadow cells+bright cells)] x 100. Spread cells and adherent but 
non-spread cells were identified as shadow and bright (spherical) cells, 
respectively [24]. At least 100 cells were scored. 

2.6. Liposome binding assay 
Binding of FNR-containing liposomes to FN was measured using 

phosphatidylcholine/[‘4C]cholesterol/FNR (a5gl)-containing lipo- 
somes prepared as previously described [22,23]. Liposome binding 
assay was performed in Pro-bind Assay Plates (Falcon) precoated with 
FN (50 &lOO ~1). Liposomes were suspended in TBS containing 1% 
BSA, 1 mM CaCl,, 1 mM MgCl,, and 1 mM MnCl,. Aliquots of this 
suspension were mixed with varying concentrations of Sph derivatives 
or 1% BSA alone, added to wells (100 pi/well containing 1.25 pg 
[‘4C]cholesterol), and allowed to bind with gentle shaking at 4°C for 24 
h. Non-specifically bound liposomes were removed by washing with 
TBS. Bound liposomes were dissolved in 1% SDS and quantified by 
scintillation counter. 

3. Results 

3.1. Sph-I-P inhibits haptotaxis of B16lFl cells 
McCarthy and Furcht reported that LM and FN pro- 

mote haptotactic migration of B16 melanoma cells [4,5]. 
We confirmed that this effect is dependent on the amount 
of ECM protein loaded on the lower surface of the Trans- 
well filters. The optimal concentration of FN was 5 pg/ 
filter. No haptotaxis of Fl cells was observed in the 
absence of FN. We first examined the effect of Sph-1-P 
on Fl cell haptotaxis through FN-loaded Transwell fil- 
ters (Fig. 2). This FN-induced haptotaxis was inhibited 
up to 55% by 300 PM RGDS synthetic peptide, indicat- 
ing that the phenomenon is dependent on FN-integrin 
interaction. Sph-1-P added to the lower chamber 
strongly inhibited haptotaxis at 10-100 nM concentra- 
tion. Similar to our previous findings for conditioned 
medium-induced Fl cell motility, higher concentrations 
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Fig. 1. New chemical synthetic scheme for Sph-1-P. See text for explanation. 
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Fig. 2. Effect of Sph-1-P on ECM protein-induced B16/Fl cell hapto- 
taxis. Haptotaxis was measured by a Transwell filter assay as described 
in section 2. The lower filter surface was coated with FN (e, 5,&filter), 
LM (A, 1 pg&lter), or Matrigel (0, 1 ,&fdter). Fl cells (4 x 10’) were 
placed on a filter in the upper chamber and cultured for 16 h in the 
presence of various concentrations of Sph-1-P in the lower chamber. 
Values represent the mean -+ S.E.M. (n = 3) of% cells migrated relative 
to control experiments (defined as 100%). The actual OD values of the 
control experiments were 0.156 (LM), 0.144 (FN), and 0.130 (Matrigel), 
respectively. 

(l-10 ,uM) of Sph-1-P did not have an inhibitory effect. 
Haptotaxis induced by LM (1 ,@filter) or Matrigel 
(1 &filter) was similarly inhibited by Sph- 1-P in a con- 
centration-dependent manner. 

3.2. Specl~city 
Next, we compared the haptotaxis-inhibitor effect of 

Sph-1-P with those of various structurally related Sph 
derivatives, some of which have been claimed to be sec- 
ond messengers or modulators of PKC or other signal 
transduction systems [6-Q. C2-Cer and C&Cer are cell 
membrane-permeable synthetic analogs of natural Cer 

Table 1 
Effect of Sph-1-P and other Sph-related compounds on Fl cell hapto- 
taxis induced by FN 

Compound Con~ntration QM) 

0.001 0.01 0.1 1.0 

Sph-1-P 73 12 38 163 
CI-Cer 119 100 146 138 
CZ-Cer 112 113 144 119 
Dihydro Sph-1-P 102 58 15 34 
Sph 83 111 120 44 
TMS 133 132 91 131 

FN-induced Fl cell haptotaxis was measured as described in section 2. 
Values represent the mean of two determinations of migrated cell num- 
ber expressed as a percentage of the control experiment (defined as 
100%) with vehicle (0.1% ethanol) alone. The actual OD value of the 
control experiment was 0.088 f 0.010 (mean t S.E.M.). 

[25-271. As shown in Table 1, TMS had no inhibitory 
effect over a wide range of concentrations (1 nM-1 PM). 
Sph showed moderate inhibition at 1 FM, possibly be- 
cause of its conversion to Sph-1-P in cells [ 141. Only 
dihydro Sph-1-P showed significant (but still lo-fold 
weaker than Sph-1-P) inhibition at the 10-100 nM con- 
centration. These findings indicate that inhibition of FN- 
induced haptotaxis is a specific property of Sph-1-P. 

3.3. Effect of Sph-1-P on Fl cell adhesion and spreading 
on ECM proteins 

When Fl cells were seeded on plastic dishes precoated 
with ECM proteins (FN and Matrigel), the cells became 
attached, spread isotropically, and assumed a discoid 
shape. In the cell adhesion assay, Sph-1-P and Sph very 
weakly affected Fl cell adhesion to Matrigel-coated plas- 
tic surface (about 20% inhibition at 0. l-l PM for Sph-l- 
P and at l-5 ,uM for Sph). Other Sph derivatives had no 
significant effect (Fig. 3). Similar results were obtained 
in FN-coating experiments (data not shown). Attach- 
ment of liposomes containing human FNR to FN-coated 
plates was not inhibited in this range of Sph-1 -P concen- 
tration (Table 2). However, even 10 nM Sph-1-P pro- 
duced significant inhibition of cell spreading (Table 3). 
This inhibition is due to prolonging of spreading time 
(data not shown). No cytotoxic effect of Sph-1-P was 
seen up to 20 ,uM. Other Sph derivatives (TMS, DMS, 
CZCer, C&-Cer) did not inhibit cell spreading up to 5 
PM (data not shown). 

4. Disunion 

Three types of cell motility can be distinguished: (i) 
random motility; (ii) directed motility toward a soluble 
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Fig. 3. Effect of Sph-1-P and other Sph derivatives on adhesion of 
[3H]thymidine-labekd Fl cells to Matrigel-coated plates. Celf adhesion 
was assayed as described in section 2. Values represent the mean (n = 2) 
of% cells adhered relative to control experiments (defined as 100%). 
The actual value from control ex~riment was 2.5 x 104 cpm/weB 
(3.8 x IO4 cells/well). o, Sph-1-P l , Sph. A, DMS. A, CZ-Cer. n, TMS. 
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Table 2 
Effect of Sph-1-P and other Sph-related compounds on binding of 
OR-liposome to FN 

Compound Concentration NM) 

0.03 0.3 1.0 3.0 

Sph-1-P 
C2-Cer 
Cer 

Sph 
TMS 
DNS 

NI NI 4 6 
NI NI 4 7 
N1 NI 3 8 
Nf NI 6 12 
NI NI 3 S 
Ni NI 4 7 

Liposome b~n~g assay was performed as described in section 2. Val- 
ues represent the mean of three dete~inatio~s of binding of FNR- 
con~in~g liposomes to FN, expressed as a percenta8e of inhibition, 
based upon [3H]chol~sterol scintillation counting. The actual value of 
the control experiment was 40.5 q/well. NI, no inhibition (c 1%). 

attractant (chemotaxis~; (iii) directed motility toward 
subs~at~-bold, insolubili~ed ECM proteins (hapto- 
taxis). Although the distinction between chemotaxis and 
haptotaxis is not always dear, they are known to be 
induced and regulated by distinct signal transduction 
mechanics f27]. ~aptotaxis may depend on integrin 
receptors [4]. Remarkable progress has been made re- 
cently in integrin-related signal transduction systems, es- 
pecially in studies of ECM protein-integrin interaction- 
induced activation of focal adhesion tyrosine kinase 
(P125”“) [28-311. 

In our previous study 2141, using both Transwefl and 
phagokinetic assays, we found that random motility and 
chemotaxis with conditioned medium of mouse mela- 
noma cells were speci~ca~~y inhibited by a low concentra- 
tion (1~1~ nM) of Sph-1-P. The present study shows 
that ECM proton-indu~d haptotaxis is also inhibited by 
a Iow concentration of Sph-1-P. This inhibitory elect is 
specific to Sph- 1 -P as opposed to other Sph-related com- 
pounds. However, Sph-1-P had little effect on attach- 
ment of Fl cells to ECM proteins. Sph-1-P digers in this 
respect from unknot integrin-modulating lipids (simi- 

Table 3 
Inhibition of Fl cell spreading on Matrigel- and EN-coated plates by 
Sph-i-P 

Co~~utration @M) Percent of spr~ding cells 

0 
0.001 
0.01 
0.1 
1.0 

Matrigel FN 

84 + 3 89 f 3 
79 * 3 87 + 5 
74 + 3 82 f 2 
64 f 8 67 + 5 
81 +3 64*5 

Spreading of Fl cells on ECM protein-coated plates was measured as 
described in section 2. Values represent the mean zt S.D. (n = 3) of 
percent spreading of cells expressed as [(shadow ~lls)/(shadow 
cells + bright cells)] x 100. 

far MW to Sph-1-P) recently described by eight et al. 
f32], which were claimed to dire&y affect the a~nity of 
integrin moiecules for ECM proteins [271. 

The fact that Sph-1-P inhibits both chemotaxis and 
haptotaxis of Fl cells suggests that this naturally oc- 
curing Sph derivative affects cell motility (and spreading) 
through modulation of a common signaling pathway. 
Our preliminary experiments demonstrated no effect of 
Sph-1-P on ELM-dependent tyrosine kinase P125FAK ac- 
tivity (data not shown). It is possible that the active site 
of Sph-1-P is located downstream from cell surface re- 
ceptors, and affects actin fitament reorganization in the 
s~u~ated cells (Sada~ra~ Y., Ruan, F., Zheng, M., 
Hakomori, S. and Igarashi, Y., unpublished data) 
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