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Two antirepressor proteins, Antl  and Ant2, of molecular weight 42 and 32 kDa, respectively, are encoded by P1 as a single open reading frame, 
with the smaller protein initiating at an in-frame start codon. Another open reading frame, icd, 5' upstream of and overlapping antl is required 
for antl expression, Using appropriate ant gene-carrying plasmids we have overproduced and purified Antl/2 in the form of a protein complex 
and Ant2 as a single protein. Sequence analysis confirmed the N-terminal amino acids predicted from the DNA sequence of anti/ant2, except that 
the N-terminal methionine is missing in the Ant2 protein. Under appropriate conditions the CI repressors of phages P1 and P7 specifically 
co-precipitate with the Antl/2 complex but not with Ant2 protein alone. The results suggest that the antirepressor may exert its Cl-inactivating 

function by a direct protein-protein interaction. 

Regulatory protein; Translational coupling; In-frame start codon; T7 RNA polymerase transcription/translation system 

1. INTRODUCTION 

P1 and P7 are closely related temperate phages which 
have a similar genome size (~ 100 kb) and organization 
[1]. Both phages encode (i) a primary repressor protein, 
Ct ,  which represses the lytic functions and (ii) a second- 
ary repressor, C4, which is an antisense RNA [2]: it 
represses the synthesis of an antirepressor, Ant, that 
would otherwise inactivate the C1 repressor [3]. Never- 
theless, P1 and P7 are reciprocally heteroimmune, i.e. 
each will grow on the lysogen of the other [4,5]. This 
immunity difference has been localized by genetic 
means to the c4 region [4]. The cl genes of P1 and P7 
can be exchanged without altering the immunity speci- 
ficity, i.e. both C1 repressor proteins must be function- 
ally identical [4,5]. In spite of this identity P1 or P7 
virulent mutants that constitutively synthesize Ant only 
induce the homoimmune but not the heteroimmune res- 
ident prophage upon infection [5,6]. These results indi- 
cated that the antirepressor is not capable of recogniz- 
ing and inactivating the C1 repressor directly. Further 
experiments suggested the existence of a phage-specific 
loading site, called s a s  (for site of ant specificity), at 
which only the homologous antirepressor acts [3,7]. The 
loading site hypothesis, although helpful in explaining 
the indirect action of Ant, does not shed light on the 
mechanism by which C1 repressor is inactivated. There- 
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Abbreviations." kb, kilobase; bp, base pairs; kDa, kilodalton; IPTG, 
isopropyl-fl-D-thiogalactopyranoside; SDS-PAGE, sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis. 

fore, a direct interaction of Ant and C1 appears to be 
necessary once the antirepressor is channeled via the 
phage-specific s a s  site. 

In a first approach to study the function(s) of P1 
antirepressor we have investigated its interaction with 
the P1 and P7 repressors in vitro. By using appropriate 
P1 DNA containing recombinant plasmids the an- 
tirepressor of P1 and the C1 repressors of PI and P7 
have been overproduced. We describe the purification 
of the P1 antirepressor which consists of two proteins, 
Antl  and Ant2. We show that purified P1 antirepressor 
is capable of specifically co-precipitating the C1 re- 
pressor of  P1 and P7 from cellular crude extracts, indi- 
cating a direct repressor-antirepressor interaction. 

2. MATERIALS AND METHODS 

2.1. Reagents 
Sources were as follows: IPTG, Boehringer-Mannheim; guanidine- 

HC1, Sigma; hydroxylapatite and low molecular weight protein stan- 
dards, Bio-Rad. Other reagents have been described previously [8-10]. 
Buffer A: 20 mM Tris-HC1, pH 7.6, 0.1 mM EDTA, 1 mM dithiothre- 
itol, 10% glycerol. Buffer B: 20 mM Tris-phosphate, pH 8.0, 50 mM 
KH2PO4, 3 M guanidine-HC1, 0.1 mM EDTA, 1 mM dithiothreitol, 
10% glycerol, SDS buffer: 90 mM Tris-HC1, pH 6.8, 5.7% SDS, 7% 
2-mercaptoethanol, 12.5% glycerol. 

2.2. Bacteria, phage and plasmids 
The Escheriehia coli strains (with relevant genotypes) used were 

JM83F" sup ° strep r, tet r [11,12] and C600 supE. The recombinant 
phage used was mGP1-2, containing the T7 RNA polymerase gene 1 
inserted into M12mp18 under the control of the lac promoter ([13]; 
Tabor and Richardson, personal communication). Plasmids pAHI018 
and pAH1016 contain different parts of the P1 imm! DNA (Fig. 1) 
inserted into plasmid pT7-6 with the T7 RNA polymerase promoter 
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¢10 [11,13]. Plasmid pMV2w carries the cl gene on a 1.634 kb Msc1693- 
Bel'I2327 subfragment of PI EcoRI fragment 7 (6.0 kb) inserted into the 
vector, pJF118EH (tac) [8,14]. Plasmid pMV2w7 carries the cl gene 
of P7 on a 1.45 kb MscI693-AvaI ~ subfragrnent inserted into the same 
vector. In isolating this subfragment from a P7 BamHI64 v- AvaI~ frag- 
ment inserted into pBR322 (a plasmid provided by F. Osborne), 52 
bp upstream of the cl gene were deleted. Index numbers refer to the 
distance (in bp) from the PI or P7 loxP site [1]. A question mark 
indicates that the nucleotide position is not yet known. 

2.3. Preparation of  C1 repressor and antirepressor 
The C1 repressor proteins of P1 and P7 were overproduced upon 

induction by IPTG of strain C600/pMV2w and C600/pMV2w7, re- 
spectively, and were purified as described [8]. P1 antirepressor was 
overproduced by infection of strain JM83F'/pAH1018 (antl/2) or 
JM83F'/pAH1016 (ant2) with phage mGP1-2 in the presence of IPTG 
[11]. The purified antirepressor proteins, Antl/2 and Ant2, were kept 
at -20°C in buffer B and A containing 1.5 M NaC1, respectively. 

2.4, N-Terminal amino acid analysis 
The antirepressor proteins, Antl and Ant2, were separated by 15% 

SDS-PAGE and blotted onto a polyvinylidine difluoride membrane 
as described [15]. The polypeptides were sequenced in a pulse-liquid 
phase sequencer, model 477A (Applied Biosysterns), equipped with the 
model 120 PTH amino acid analyser as described [16]. 

3. RESULTS 

3.1. Overproduction of  P1 antirepressor 
As a consequence of antirepressor synthesis from a 

multicopy plasmid the bacteria become filamentous and 
finally die [11]. Therefore we have used the pT7-6/ 
mGP1-2 expression system of Tabor and Richardson 
[13] for the overproduction of P 1 antirepressor. Bacteria 

carrying appropriate pT7-6/P1 immI recombinant plas- 
mids were infected with the recombinant phage mGPt- 
2, and synthesis of T7 RNA polymerase was induced by 
IPTG as described in the legend to Fig. 2. As soon as 
the enzyme is synthesized, transcription starts at the T7 
RNA polymerase promoter ¢10 located on the pT7-6/ 
P1 immI plasmid (Fig. 1). Plasmid pAH1018 contains 
the intact icd and ant genes, which are translationally 
coupled, and part of the kilA gene [17,18]. In plasmid 
pAH1016, icd and the beginning of the antl gene are 
deleted so that only ant2 can be expressed (Fig. 1). 
Following a 2 h incubation period at 37°C the bacteria 
were lysed by either SDS or lysozyme as described in the 
legend to Fig. 2 and the lysates subjected to SDS- 
PAGE. Under these conditions the Antl/2 proteins and 
a KilA* fusion protein [11] are overproduced from 
pAH 1018 (Fig. 2A), whereas pAH 10 t 6 yields only Ant2 
protein (Fig. 2B). 

3.2. Purification of P1 antirepressor 
Following the overproduction of the Antl/2 proteins 

in strain JM83F'/pAH1018 the bacteria were lysed with 
lysozyme as described in the legend to Fig. 2. An aliquot 
of the lysozyme lysate was subjected to SDS-PAGE. 
SDS lysates of the IPTG-induced and uninduced cul- 
tures were run in parallel in order to follow the overpro- 
duction of SDS-soluble antirepressor proteins. Very lit- 
tle or no Antl/2 proteins were solubitized by the ly- 
sozyme procedure (Fraction S, Fig. 2A). However, 
when the remaining pellet was extracted with buffer A 
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Fig. 1. The P1 immI operon and the P1 immllpT7-6 recombinant plasmids used. P1 immI DNA overlaps the neighbouring P1 EcoRI fragments 
9 and 14, and contains the O-controlled operator Op51 (open circle), the tandem promoter P51a and b (black triangles), and the genes, c4, icd, 
and ant, in that order. It is followed by the C1 -controlled Op53/P53 element and the kilA gene which extends from P1 EcoRI: 14 into the neighbouring 
P1 EcoRI:25 (not shown). The icd gene comprises 73 codons and is preceded by a ribosome binding site (black rectangle). The anti gene codes 
for 347 amino acids and contains an in-frame start (vertical interrupted line) for a polypeptide, Ant2, of 264 amino acids. The icd and anti genes 
overlap and are translationally coupled. The nucleotide triplets at the 5' ends ofantl  and ant2 are shown together with the amino acids which were 
determined as described in section 2. A star means that the amino acid was not identified unequivocally. Plasmid pAH I 018 and pAH 1016 contains 
the P1 HinclI-EcoRI and P1 PvuI-BstXI subfragments, respectively (horizontal line) inserted into pT7-6 with the T7 ¢10 promoter (bold arrow). 

Relevant restriction enzyme cleavage sites with the nucleotide positions are shown. 
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Fig. 2. SDS-PAGE of overproduced and purified Anti/Ant2 proteins. 
Lysozyme lysate: A 1 I culture of strain JM83F' carrying either plasmid 
pAH1018 (a) or pAH1016 (b) was grown at 37°C. At an OD590 = 1.0, 
cells were infected with phage mGP1-2 (multiplicity of infection = 20) 
and synthesis of T7 RNA polymerase was induced by the addition of 
IPTG (2 mM final concentration). After 2 h bacteria were centrifuged 
(5 min at 8,000 x g, 2°C, GSA rotor) and the cell pellet was resus- 
pended in 200 mM NaC1, 20 mM spermidine, and 2.5 mM EDTA (5 
ml/g wet cell paste). All operations were done at 0~J,°C if not otherwise 
noted. The suspension was adjusted to 25 mM Tris-HC1, pH 8.0, 180 
mM NaC1, 2 mM EDTA, 15 mM spermidine, 3.5% sucrose, 0.1% Brij 
58, 0.5 mg/ml lysozyme. After 30 min incubation lysis was completed 
by warming up to 10°C for 3 rain. (a) The lysozyme lysate (20 ml) was 
adjusted to 1.5 M NaCI and centrifuged (10 min at 20,000 x g, SS34 
rotor). The supernatant (S) was removed and the pellet was washed 
with 10 ml of buffer A containing 1.5 M NaC1 and centrifuged. It was 
extracted with 10 ml of buffer A containing 3 M guanidine-HC1 for 
10 min and again centrifuged. The supernatant contained the Anti/2 
proteins (Fraction I). Fraction I was dialyzed overnight against buffer 
A containing 6 M urea. The Antl/2 proteins precipitated under these 
conditions. The precipitate was incubated in 5 ml buffer A with 5 mM 
MgCI~, DNase I and RNase I (50/lg/ml each) for 5 min at 30°C. After 
extensive washing with buffer A the precipitate was dissolved in buffer 
B and applied to a hydroxylapatite column (2 ml, equilibrated with 
buffer B) and the flow-through was collected (Fraction II). (b) The 
lysozyme lysate (20 ml) was centrifuged (10 rain at 20,000 x g, SS34 
rotor), the pellet was eluted with 10 ml of buffer A containing 1.5 M 
NaC1 and then again centrifuged. More than 60% of the total Ant2 
protein was found in the supernatant (Fraction I). Solid ammonium 
sulfate (0.242 g/ml) was slowly added to Fraction I. After 2 h the 
precipitate was collected by centrifugation (10 rain at 12,000 x g, SS34 
rotor) and dissolved in buffer A with 1.5 M NaC1 (Fraction II). 
Fraction II was dialyzed overnight against buffer A containing 50 mM 
NaC1. The precipitate was washed with the same buffer and then 
dissolved in 2 ml buffer A containing 1.5 M NaC1 (Fraction III). SDS 
lysate: A 10 ml culture of uninduced (-) and a 10 ml aliquot of the 
IPTG-induced (+) bacteria were separately centrifuged. Lysates of the 
cell pellets were prepared in SDS (1 ml bacterial culture, OD450 = l, 
30/11 SDS buffer, 5-10 rain at 100°C). Aliquots of the fractions were 
subjected to 15% SDS-PAGE and the proteins were stained with 
Coomassie blue. M, marker proteins, in descending order: phosphory- 
lase B, bovine serum albumin, ovalbumin, carbonic anhydrase, soy- 

bean trypsin inhibitor, and lysozyme. 

con ta in ing  3 M guanidine-HC1 both  proteins were solu- 
bilized in abou t  equ imolar  amoun t s  (Frac t ion  I, Fig. 
2A). F rac t ion  I was treated with DNase  and  RNase  in 
order to remove con tamina t ing  nucleic acids and  passed 
through a hydroxylapat i te  column.  The A n t  1/2 proteins 
appear  in the f low-through and  are at least 90% pure 

(Frac t ion  II, Fig. 2A). Since bo th  proteins co-purify 
unde r  all condi t ions  tested, s t ra in JM83F ' / pAH1016  
was used for the isolat ion of  An t2  protein  alone. In  
contras t  to the mixture  of  A n t l  and  Ant2,  the Ant2  
prote in  is already solubilized by extract ion of  the cell 
pellet with buffer A con ta in ing  1.5 M NaC1 (Frac t ion  
I, Fig. 2B) and  only precipitates at salt concent ra t ions  
of  less than  0.5 M NaC1. The protein  was further  puri-  
fied by precipi ta t ion with a m m o n i u m  sulfate (Frac t ion  
II, Fig. 2B) and  by dialysis against  buffer A conta in ing  
50 m M  NaCI (Fract ion III,  Fig. 2B) as described in the 
legend to Fig. 2. Frac t ion  III  conta ins  the Ant2  prote in  
at least 80% pure. The different solubili ty properties of 
A n t l / 2  vs. the Ant2  protein  indicate that  the former 
proteins exist as a complex conta in ing  abou t  equimolar  
a moun t s  of  A n t l  and  Ant2.  F o r  convenience,  in the 
following we call this complex the antirepressor.  

The N- te rmina l  amino  acids of the A n t l  and  Ant2  
protein  were determined as described in section 2 using 
100/ lg  of antirepressor protein  (Frac t ion  II). Most  of 
the N- te rmina l  amino  acids shown in Fig. 1 could be 
identified unequivocally,  and  their sequence corre- 
sponds to that  deduced from the nucleotide sequence of  
the antl/2 gene [11]. The Ant2  prote in  does no t  conta in  
an N- te rmina l  meth ionine  (Fig. 1), so that  the molecule 
conta ins  a total  of  263 instead of  264 amino  acids. 

3.3. Interaction o f  P I  antirepressor with the C1 re- 
pressor o f  P1 and P7 

Purified P1 C1 repressor samples (2/.tg each in 200 
fll of  buffer A) were mixed with increasing a moun t s  of 
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Fig. 3. Precipitation of P1 C1 repressor by antirepressor. A lysozyme 
lysate of an IPTG-induced culture of C600/pMV2w was diluted 10- 
fold with buffer A. Samples (200 ,ul each) were incubated with 0 (A), 
5 (B), 10 (C), and 20ktg (D) of antirepressor for 30 min at 37°C. The 
samples were centrifuged (10 min at 20,000 x g, 2°C, SS34 rotor) and 
the supernatants carefully removed. The pellets were washed once with 
0.5 ml of buffer A and then redissolved in 50/11 of SDS buffer. 
Supernatants and redissolved pellets (50 and 12.5,ul each, respectively) 
were subjected to 15% SDS-PAGE. For the preparation of the ly- 
sozyme and SDS lysates of uninduced (-) and induced (+) bacteria, 
electrophoresis, marker proteins, and protein staining see the legend 
to Fig. 2. M, marker proteins; C1, 2.5 ,ug of P1 C1 repressor; Anti/2, 

10/~g of antirepressor (Fraction II). 
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Fig. 4. Precipitation of P7 C1 repressor by P1 antirepressor. A ly- 
sozyme lysate of an IPTG-induced culture of C600/pMV2w7 was 
treated in the same way as described in the legend to Fig. 3 except that 
0 (A) and 20 ]zg (D) of P1 antirepressor (Fraction II) was used. For 
marker proteins, electrophoresis and protein staining see the legend 
to Fig. 2. M, marker proteins; C1, 2.5 ~tg of P7 C1 repressor; Antl/2, 

5 fig of antirepressor (Fraction II). 

BSA (2-100 ¢tg) and subsequently incubated with 
freshly diluted antirepressor (8 gig each of  Fraction II). 
The antirepressor precipitated under these conditions 
and only C1 repressor, but not BSA, was found in the 
redissolved precipitate (data not shown). The specificity 
of  the repressor-antirepressor interaction was best dem- 
onstrated in the following experiment. Increasing 
amounts of antirepressor (Fraction II, A-D)  were 
added to a lysozyme lysate of  C600/pMV2w in which 
P1 C1 repressor had been overproduced by induction 
with IPTG (Fig. 3). A precipitate was pelleted and both 
the supernatant and the redissolved pellet were sub- 
jected to SDS-PAGE. SDS lysates of  the IPTG-induced 
and uninduced cultures were run in parallel in order to 
follow the overproduction of  C1 repressor. The C1 re- 
pressor band reappeared in the pellet in the same meas- 
ure as it disappeared from the supernatant. As judged 
from the intensity of the Coomassie blue-stained protein 
bands, a 2- to 4-fold molar excess of antirepressor is 
needed to precipitate a given amount  of  C1 repressor 
(Fig. 3). The reaction is specific for the Antl /2 protein 
complex, since Ant2 protein (Fraction III), when mixed 
with purified C1 repressor in a 4:1 weight ratio, precip- 
itates, but the precipitate does not contain C1 repressor 
(data not shown). 

We tested whether the C1 repressor of  P7 would also 
react with the P1 antirepressor. Following induction of 
C600/pMV2w7 with IPTG a 34 kDa protein is overpro- 
duced which was considered to be the P7 C1 repressor. 
To prove this assumption we have purified this protein 
following exactly the procedure described for the purifi- 
cation of the P1 C1 repressor [8]. The purified P7 C1 
repressor (Fig. 4) specifically binds to operator-contain- 
ing P1 DNA (data not shown). A lysozyme lysate of  
induced C600/pMV2w7 bacteria was incubated with an- 

tirepressor as described above. The 34 kDa protein is 
precipitated from the lysate with antirepressor (Fig. 4) 
as was shown above for the P1 C1 repressor. 

4. DISCUSSION 

Sequence analysis confirmed the N-terminal amino 
acids predicted from the DNA sequence of antl  [11]. 
The Ant2 protein lacks only the N-terminal methionine. 
The analysis also confirms the existence of  an overlap 
of  the termination-initiation sites, ATGA (nucleotides 
1-4, Fig. 1), of  the icd antl  genes [17]. Such an overlap 
indicates a translational coupling of  the genes and is 
frequently found for phage genes [19]. 

The C1 repressors of  P1 and P7 are not only function- 
ally identical but also very similar in their structure. The 
cl regions of  both phages contain open reading frames 
of 283 codons each, differing only by two amino acids 
[20]. Therefore, it is not surprising that the C1 repressor 
of  P7 also co-precipitates with the antirepressor of P1. 
The extensive similarity of  both repressors strongly sup- 
ports the idea that the inducibility by the antirepressor 
of only the homoimmune prophage must reside in some 
phage-specific element other than C1 [3]. This element 
may be the hypothetical DNA site, sas [3,7], which me- 
diates an interaction with the antirepressor of  the same 
phage only (or preferentially). A phage-specific interac- 
tion of the antirepressor with a sas site requires that 
Antl /2 of  P1 and P7 differ from each other but without 
affecting their ability to interact with the C1 repressor 
of  either phage. 

The properties of  P 1 antirepressor are similar to those 
of the antirepressor of  phage P22. The latter interferes 
directly with the C1 repressor of  phage 2 which is anal- 
ogous in function to the C2 repressor of P22 [21]. Prein- 
cubation of  2 C1 repressor with P22 antirepressor in 
P22-infected crude cell extracts abolishes the subse- 
quent binding of 2 C1 repressor to 2 D N A  [22]. The 
35-kDa antirepressor of P22 is also solubilized in guani- 
dine-HC1 by extracting the insoluble material from a 
lysate of  P22-infected bacteria [23]. 

Precipitation with P1 antirepressor of  the P1 or P7 
repressor from cellular crude extracts is a remarkably 
specific reaction. Nevertheless, we are aware of the fact 
that it does not mimic the in vivo conditions simply 
because of  the solubility properties of  the P1 antirepres- 
sor. To overcome this problem we are currently trying 
to isolate fragments of  the P1 antirepressor protein in 
the hope that they may retain the ability to interact with 
the C1 repressors under non-denaturing conditions. 

Acknowledgements." We thank D. Vogt for the preparation of plasmid 
DNA. We are indebted to F. Osborne for providing the recombinant 
plasmid carrying the P7 cl gene. We thank S. Tabor and C.C. Ri- 
chardson for the pT7-6/mGP1-2 expression system and R. Brima- 
combe for suggestions to improve writing of the manuscript. 

168 



Volume 334, number  2 FEBS LETTERS November 1993 

R E F E R E N C E S  

[1] Yarmolinsky, M.B. and Lobocka, M.B. (1993) in: Genetic Maps, 
Book 1 (O'Brien, S.J. ed.) pp. 1.50-1.61, Cold Spring Harbor 
Laboratory Press, Cold Spring Harbor, NY. 

[2] Citron, M. and Schuster, H. (1990) Cell 62, 591-598. 
[3] Yarmolinsky, M.B. and Sternberg, N. (1988) in: The Bacterio- 

phages, vol. 1 (Calendar, R. ed.) pp. 291-438, Plenum, NY. 
[4] Chesney, R.H. and Scott, J.R. (1975) Virology 67, 375--384. 
[5] Wandersman, C. and Yarmolinsky, M. (1977) Virology 77, 386- 

400. 
[6] West, B.W. and Scott, J.R. (1977) Virology 78, 267-276. 
[7] Sternberg, N., Austin, S. and Yarmolinsky, M. (1979) Contrib. 

Microbiol. Immunol. 6, 89-99. 
[8] Dreiseikelmann, B., Velleman, M. and Schuster, H. (1988) J. BiN, 

Chem. 263, 1391-1397. 
[9] Heinrich, J., Riedel, H.-D., Baumstark, B.R., Kimura, M. and 

Schuster, H. (1989) Nucleic Acids Res. 17, 7681--7692. 
[10] Vellernan, M., Dreiseikelmann, B. and Schuster, H. (1987) Proc. 

Natl. Acad. Sci. USA 84, 5570 5574. 
[11] Heisig, A., Riedel, H.-D., Dobrinski, B., Lurz, R. and Schuster, 

H. (1989) J. Mol. Biol. 209, 525-538. 
[12] Yanisch-Perron, C., Vieira, J. and Messing, J. (1985) Gene 33, 

103-t19. 

[13] Tabor, S. and Richardson, C.C. (1985) Proc. Natl. Acad. Sci. 
USA 82, 1074-1078. 

[14] Fiirste, J.R, Pansegrau, W., Frank, R., B16cker, H., Scholz, R, 
Bagdasarian, M. and Lanka, E. (1986) Gene 48, 119---131. 

[15] Choli, T., Kapp, U. and Wittmann-Liebold, B. (1989) J. Chroma- 
togr. 476, 59-72. 

[16] Walsh, M., McDougall, J. and Wittmann-Liebold, B. (1988) Bio- 
chemistry 27, 6867-6876. 

[17] Riedel, H.-D., Heinrich, J. and Schuster, H. (1993) J. Bacteriot. 
175, 2833-2838. 

[18] Hansen, E.B. (1989) J. Mol. Biol. 207, 135-149. 
[19] Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F. and Peterson, 

G.B. (1982) J. Mol. Biol. 162, 729-773. 
[20] Osborne, F.A., Stovall, S.R. and Baumstark, B.R. (1989) Nucleic 

Acids Res. 17, 7671-7680. 
[21] Susskind, M.M. and Youderian, R (1983) in: Lambda II (Hen- 

drix, R.W., Roberts, J.W., Stahl, F.W. and Weisberg, R.A., eds) 
pp. 347-363, Cold Spring Harbor Laboratory, Cold Spring 
Habor, NY. 

[22] Sauer, R.T., Krovatin, W., DeAnda, J., Youderian, R and 
Susskind, M.M. (1983) J. Mol. Biol. 168, 699-713. 

[23] Susskind, M.M. and Botstein, D. (1975) J, Mol. Biol. 98, 413- 
424. 

169 


