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Incubation of GalNAcfl(14)GlcNAcfl-OMe with GDP-Fuc in the presence of human milk 0~3/4-fucosyltransferase resulted in the formation of 
GalNAcfl(1M)[Fucc~(l-3)]GlcNAcfl-OMe. Under conditions that led to complete ~z3-fucosylation of Galfl(l~)GlcNAcfl-OEt, GalNAcfl(1- 
4)GlcNAcfl-OMe was fucosylated for more than 85%. For the identification of the isolated fucosylated products one- and two-dimensional 
~H-NMR spectroscopy was applied. In vacuo molecular dynamics simulations of Galfl(1 ~4)[Fuc~( 1-3)]GlcNAcfl-OEt and GalNAcfl( 1M)[Fucc~(1 
3)]GlcNAcfl-OMe using the CHARMm based force field CHEAT, demonstrated only small differences between the conformations of these 

compounds. This illustrates the minor conformational influence of the substituent at C-2', i.e. a hydroxyl function versus a N-acetyl group. 

Fucosyltransferase; GalNAc-containing N-glycan; Conformational analysis; Lewis x 

1. I N T R O D U C T I O N  

A structural variant of  the Le x oligosaccharide ele- 
ment Galfl(14)[Fuc~(1-3)]GlcNAcfl, namely GalNAc 
fl(1-4)[Fucc~(1 3)]GlcNAcfl, has been demonstrated to 
occur in O-linked oligosaccharides of  the sea squirt H- 
antigen [1]. Recently, this structural variant was also 
identified as a terminal element in N-linked carbohy- 
drate chains derived from human urinary-type plasmin- 
ogen activator [2], from Schistosoma mansoni glycopro- 
teins [3], from honeybee venom phospholipase A2 [4] 
and from bovine pro-opiomelanocortin [5]. 

The biosynthesis of  the Le x determinant is known to 
proceed by the ordered addition of f lGal  in (1-4)-link- 
age and ~Fuc in (1-3)-linkage to a terminal GlcNAc 
residue (for a review see [6]). Human milk has been 
demonstrated to contain at least two different ~3/4- 
fucosyltransferase activities, which both are capable of 
catalyzing the synthesis of  the Le x sequence [6]. Human 
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Abbreviations: Fuc, fucose; Neu5Ac, N-acetylneuraminic acid; Le x, 
Lewis x; 1 D, one dimensional; 2D, two-dimensional; COSY, correla- 
tion spectroscopy; HOHAHA, homonuclear Hartmann Hahn; 
MLEV, composite pulse devised by Malcom Levitt; r.O.e., rotating 
frame nuclear Overhauser enhancement; ROESY, rotating frame nu- 
clear Overhauser enhancement spectroscopy; CHEAT, carbohydrate 
hydroxyls represented by extended atoms; CHARMm, Molecular 
Simulations Inc. version of Chemistry Harvard macromolecular me- 
chanics; MD, molecular dynamics. 

milk ~3/4-fucosyltransferase preparations have been 
used in the synthesis of the Le y epitope [7], the ~(2-3)- 
sialylated Le x determinant (SLe x) [8], the ~(1-3)-galac- 
tosylated Le x tetrasaccharide [9], and the 3"-O-sulfated 
Le x trisaccharide (T. De Vries and D.H. Van den 
Eijnden, unpublished results), indicating that substitu- 
tion at C-2 or C-3 of the Gal moiety in the Galfl(1- 
4)GlcNAcfl acceptor substrate does not impair the 
transfer of Fuc to C-3 of the GlcNAc residue. In view 
of this acceptor property it was of interest to investigate 
whether the human milk preparation could also func- 
tion in the synthesis of the GalNAc variant of Le x. 

2. MATERIALS AND METHODS 

2.1. Materials 
GalNAcfl(la)GlcNAcfl-OMe (GNGn) was a generous gift of Dr. 

J.G.M. Van der Ven [10]. Galfl(14)GlcNAcfl-OEt (GGn) and GDP- 
Fuc were obtained from BioCarb AB, Lund, Sweden. GDP-[3H]Fuc 
(7 Ci/mmol) was purchased from DuPont NEN (Boston, MA), and 
was diluted with unlabelled GDP-Fuc. Partially purified human milk 
c~3/4-fucosyltransferase, kindly provided by Mrs. T. De Vries, was 
isolated from pooled human milk as described in [11] with minor 
modifications [12]. The resulting preparation contained the enzyme in 
a 225-fold purified form (1.4 mU/ml) in a solution of 50 mM sodium 
cacodylate buffer, pH 7.2, containing 50% (by vol.) glycerol, 100 mM 
NaC1, 5 mM MgC12 and 0.05% sodium azide. 

2.2. Enzymic conversions and isolation of the products 
The incubation mixtures used for fucosylation of GNGn and GGn 

contained in a volume of 1 ml: 1/.tmol acceptor oligosaccharide, 1.5 
/.tmol GDP-[3H]Fuc (0.5 Ci/mol), 50 /.tmol 3-(N-morpholino)- 
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propanesulfonate (MOPS/NaOH) buffer pH 7.5, 4 ,umol ATE 10 
'umol MnC12, and 1.4 mU of the ct3/4-fucosyltransferase preparation 
mentioned above. The mixtures were incubated for 44 h at 37°C, and 
passed over a column (2.5 ml) of Dowex l-X8 (CI- form). In each case, 
the columns were washed with 3 bed volumes of H20, and the com- 
bined eluate and washes were lyophilized. Then, the samples were 
fractionated on a column (1.6 × 200 cm) of Bio-Gel P-4 (200400 
mesh, Bio-Rad) equilibrated in and eluted with 0.05 M ammonium 
acetate buffer, pH 5.2, at a flow rate of 17 ml/min and 27°C. Fractions 
of 4 ml were collected and small aliquots were assayed for 3H-radioac- 
tivity by liquid scintillation counting. Radioactive fractions were fur- 
ther analyzed by high-pH anion-exchange chromatography (HPAEC) 
in a system consisting of a Dionex Bio-LC gradient pump, a CarboPac 
MA-1 column (4.0 × 250 mm) and a Model PAD 2 detector. The pulse 
potentials and durations used for the pulsed- amperometric detection 
(PAD) were E~ = 0.05 V (fi = 480 ms); E2 = 0.60 V (t 2 = 120 ms); 
E3 = -0.60 V (t3 = 60 ms); response time ls. Isocratic elution was 
performed using 0.1 M NaOH at a flow rate of 0.4 ml/min. Bio-Gel 
P-4 fractions that appeared to contain 3H- labelled carbohydrate ma- 
terial and no unconverted substrate were pooled, lyophilized and de- 
salted on a column (1.0 × 45 cm) of Bio-Gel P-2 (200~400 mesh), 
eluted with H20. 

2.3. Molecular dynamics simulations 
Molecular dynamics simulations were performed using CHEAT, a 

CHARMm based force field for carbohydrates [13], in which carbohy- 
drate hydroxyl groups are represented by extended atoms to prevent 
the formation of intramolecular hydrogen bonds. This force field was 
adapted (Dr. L.M.J. Kroon-Batenburg, Department of Crystal and 
Structural Chemistry, Utrecht University, unpublished data) to be 
used with the molecular modelling package INSIGHT/DISCOVER 
(Biosym Technologies Inc.). The two fucosylated carbohydrate struc- 
tures were created graphically with the initial interglycosidic torsion 
angles conform those of the minimum energy conformations of the Le x 
trisaccharide [14]. The atoms of the methyl, ethyl and N-acetyl substit- 
uents were implemented in these models on basis of the existing gen- 
eral valence force field (CHARMm). After initial energy minimisation, 
the in vacuo dynamics simulations were run for 1 ns, with a time step 
of 0.001 ps at a constant temperature of 27°C. The first 100 ps of each 
run were considered to be the equilibration time, then data were stored 
every 1 ps. The calculations were performed on a Silicon Graphics Iris 
Indigo R3000. The interglycosidic torsion angles ~ and q~ are defined 
as Os-C~-Ox-C x and C10x CxCx-~, respectively, where O,, C x and 
Cx-~ are aglyconic atoms (IUPAC convention [15]). 

2.4. I H-NMR spectroscopy 
1D 500- and 600-MHz ~H-NMR spectra were recorded as described 

[16,17]. In the case of 2D NMR experiments, data matrices of 
512 x 2048 points were recorded at temperatures as indicated in sec- 
tion 3, using Bruker NMR-software and the time-proportional phase 
increment method. The 1HO2H signal was presaturated for 1 s during 
the relaxation delay. 500-MHz 2D HOHAHA spectra of GNGn and 
GalNAcfl(l~)[Fuco~(1-3)]GlcNAcfl-OMe (GN(F)Gn) were recorded 
using a MLEV-17 mixing sequence of 120 ms, and a spin-lock field- 
strength corresponding to a 90 ° ~H pulse-width of 28.1 ,us. For GNGn 
the data matrix represented in each dimension a spectral width of 3106 
Hz, and for GN(F)Gn of 3817 Hz. The 2D HOHAHA spectrum of 
Galfl(1-4)[Fucct(1 3)]GlcNAc,8-OEt (G(F)Gn) was recorded at 600 
MHz, using a MLEV-17 mixing sequence of 120 ms, a spin-lock 
field-strength corresponding to a 90 ° 'H pulse-width of 28.2 ,us, and 
a data matrix representing a spectral width of 4505 Hz in each dimen- 
sion. The 500-MHz 2D ROESY spectra of GNGn and GN(F)Gn were 
acquired, using a spin-lock mixing pulse of 200 ms at a field-strengh 
corresponding to a 90 ° ~H pulse-width of 112.3 ,us. The data matrices 
represented a spectral width of 3106 Hz and 4274 Hz in each dimen- 
sion for GNGn and GN(F)Gn, respectively. In the case of GNGn, the 
carrier-frequency was placed on the IHO2H-line at 4.94 ppm, whereas 
for GN(F)Gn it was placed 200 Hz upfield from the Fuc H-1 signal. 
The 500-MHz double quantum filtered ~H-~H 2D COSY spectra of 

GNGn and GN(F)Gn were obtained with a spectral width of 3106 Hz 
for GNGn, and 3816 Hz for GN(F)Gn, respectively, in each dimension. 
The 600-MHz double quantum filtered ~H ~H 2D COSY spectrum of 
G(F)Gn was acquired with a spectral width of 4506 Hz in each dimen- 
sion. The time domain data of the COSY, HOHAHA and ROESY 
experiments, were zero-filled to 1024 × 2048 data matrices prior to 
multiplication with a squared-bell function, phase shifted by Ir/3. 

3. R E S U L T S  

I n c u b a t i o n  o f  G a l N A c f l ( 1 - 4 ) G l c N A c f l - O M e  ( G N G n )  

w i t h  G D P - F u c  in the  p r e s e n c e  o f  h u m a n  mi lk  ~3/4-  

f u c o s y l t r a n s f e r a s e  a f f o r d e d  G a l N A c f l ( 1 - 4 ) [ F u c ~ ( 1 -  

3 ) ] G l c N A c f l - O M e  ( G N ( F ) G n ) .  In  a s imi la r  way,  i n c u b a -  

t i o n  o f  G a l f l ( l ~ , ) G l c N A c f l - O E t  ( G G n )  y i e lded  the  

Le x t r i s a c c h a r i d e  G a l f l ( l ~ , ) [ F u c 0 ~ ( 1 - 3 ) ] G l c N A c f l - O E t  

( G N ( F ) G n ) .  U n d e r  the  c o n d i t i o n s  t h a t  r e s u l t ed  in c o m -  

p le te  c o n v e r s i o n  o f  G G n ,  m o r e  t h a n  85% o f  G N G n  was  

t r a n s f o r m e d .  I s o l a t i o n  o f  the  p r o d u c t s  w a s  a c h i e v e d  by  

B i o - G e l  P-4  f i l t r a t i on  (Fig.  1), u s i n g  H P A E C - P A D  as 

a m o n i t o r i n g  s y s t e m  to  a l l ow the  i den t i f i c a t i on  o f  f rac-  

t i ons  c o n t a i n i n g  o n l y  p r o d u c t  (G (F )G n ,  r e t e n t i o n  t ime  

(te) 4.8 min ;  G N ( F ) G n ,  t e 5.0 m i n )  a n d  n o  s t a r t i n g  m a t e -  

rial ( G G n ,  te 5.3 min ;  G N G n ,  to 7.7 min) .  

C o m p l e t e  u n r a v e l l i n g  o f  t he  1D ~ H - N M R  s p e c t r a  o f  

G N ( F ) G n  (Fig.  2) a n d  G N G n  was  c a r r i e d  o u t  by  app ly -  
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Fig. 1. Isolation of the products of ~3-fucosylation catalyzed by the 
human milk enzyme of G(F)Gn (upper panel) and GN(F)Gn (lower 
panel) by Bio-Gel P-4 chromatography. Of the radioactive fractions 
number 75 78 (upper panel) and 71-72 (lower panel), respectively, 
were pooled, lyophilized and the materials were analyzed by I H-NMR 
spectroscopy. The radioactive materials eluting in fractions 85 88 and 

92-98 are degradation products of GDP-[3H]Fuc. 
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Fig. 2. Resolution-enhanced 500-MHz 1H-NMR spectrum at 300 K of GalNAcfl(1-4)[Fucc~(1-3)]GlcNAcfl-OMe. The letters and numbers refer 
to the residues in the structure and to the protons in that residue. 

ing 2D COSY, H O H A H A  and ROESY experiments. In 
order to obtain an increased intensity for the r.O.e. 
cross-peaks, the 2D ROESY spectra were measured at 
285 K. COSY and H O H A H A  spectra were measured 
at 285 K to attain identical chemical shifts for the corre- 
sponding protons in each 2D spectrum, and at 300 K 
for comparison with standard structural-reporter- 
group data. The spectral data are listed in Table I. For  
both compounds the assignment of  the H-1 signals of  
GalNAc and GIcNAc is based on the appearance in the 
H O H A H A  spectrum of the unique spin-coupling sys- 
tems for GalNAc (H-I-H-4)  and for GlcNAc (H- l -H-  
6/6'), respectively. Starting at H-l ,  all individual proton 
signals of  GlcNAc could be assigned via the ~H-IH 
cross-peaks in the COSY spectrum. Furthermore, the 
GalNAc H-1,2,3,4 and H-5,6,6' spin systems were 
traced, and the two sets were correlated via an intrare- 
sidual r.O.e, cross-peak between GalNAc H-1 and 
GalNAc H-5 in the 2D ROESY spectrum. For  the full 
assignment of  the proton signals of  the Fuc residue in 
GN(F)Gn, the typical set of  H-l ,  H-5 and CH 3 signals 
formed the starting point [16]. The cross-peaks in the 
ROESY spectrum which correlate Fuc H-1 (3JH_1,H_2, 4 
Hz) with GlcNAc H-3 (strong) and Fuc H-1 with 
GlcNAc H-4 (very weak), demonstrate that the Fuc 
residue is ~z(1-3)-linked exclusively to the GlcNAc resi- 
due. The IH-NMR data of G(F)Gn (Table I) are in good 
agreement with those reported for Galfl(1-4)[Fucc~(1- 
3)]GlcNAcfl(1-3)Galfl(14)Glc [14,18] and Galfl(1- 
4)[Fucct(1-3)]GlcNAc [19]. 

In the 2D ROESY spectrum of GN(10Gn, a weak 
r.O.e, cross-peak between Fuc H-5 and GalNAc H-2 
was observed. A similar r.O.e, contact has been found 

for Galfl(1 4)[Fucc~(1-3)]GlcNAc/~(1-3)Galfl(1 4 ) G l c ,  
i.e. Fuc H-5 ~ Gal H-2, originating from a rigid con- 
formation of the Le x trisaccharide element [14,20]. The 
presence of similar r.O.e, interactions in the Le x and in 
the GalNAc variant of  the Le x element initiated a com- 
parative conformation study of  G(F)Gn and GN(F)Gn, 
which was focused on the influence of  the replacement 
of  OH by NAc at C-2'. The applied CHEAT force field 
has the advantage that no explicit solvent molecules 
have to be included in the calculation, because the aver- 
age effect of  inter- and intramolecular hydrogen bond- 
ing is covered by the potential energy function of the 
extended atom type for the hydroxyl groups. Two mo- 
lecular dynamics (MD) simulations were performed for 
G(F)Gn, starting with the interglycosidic torsion angles 
of  the minimum energy conformations A and B (Table 
II) of reference Galfl(l~)[Fuc~(1-3)]GlcNAcfl-OMe, 
respectively, as presented in [14]. As can be deduced 
from the time-averaged interglycosidic torsion angles, 
~ d 7 %  and q~F[G(F)Gn]/~UF[G(F)Gn ] describing the 
Ga l f l ( l~ )GlcNAc and the Fuc~(1-3)GlcNAc linkages 
in G(F)Gn, respectively, the two MD runs for G(F)Gn 
produced essentially the same results (Table II). The 
time-averaged torsion angles match those of reference 
MD1 and MD2 [14], resulting from the MD simulations 
of  minimum energy conformations A and B, respec- 
tively. 

One MD simulation was performed for GN(F)Gn 
(Fig. 3) using the interglycosidic torsion angles of the 
lowest energy conformation A [14] as start parameters. 
Projections of  the time-averaged conformations are de- 
picted in Fig. 4. The time-averaged interglycosidic tor- 
sion angles, q~CN/7~GN and cI)v[GN(F)Gn]/~Uv[GN(F)Gn] 
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Table I 

~H-NMR chemical shifts of GNGn, G(F)Gn and GN(F)Gn. Chemical shifts are given at 285 K and at 300 K, as indicated, in ppm downfield from 
internal acetone in 2H20 (~ 2.225) [16]. Compounds are represented by short-hand symbolic notation: ([3), L-Fuc; (o), o-GlcNAc; (m), D-Gal; (¢~), 

o-GalNAc; Et, ethyl; Me, methyl, n.d., not determined. 

Residue Proton Chemical shifts (ppm) in 

G(F)Gn G(F)Gn GNGn GN(F)Gn GNGn GN(F)Gn 

Temperature (K) 285 300 285 285 300 300 

GlcNAc H-1 4.552 4.561 4.433 4.422 4.438 4.433 
H-2 n.d. 3.87 3.733 3.915 3.712 3.905 
H-3 n.d. 3.86 3.714 3.822 3.682 3.832 
H-4 3.929 3.920 3.628 3.882 3.617 3.876 
H-5 3.585 3.584 3.521 3.524 3.520 3.523 
H-6 3.996 3.996 3.865 3.939 3.861 3.933 
H-6' 3.855 3.852 3.668 3.747 3.664 3.733 
NAc 2.028 2.028 2.026 2.018 2.027 2.019 

OMe/OEt CH 3 1.157 1.157 3.497 3.489 3.498 3.489 
C H J C H  2' n.d. 3.90/3.67 - - 

Fuc 

Gal/GalNAc 

H-1 5.107 5.104 5.107 5.102 
H-2 3.681 3.688 - 3.683 3.691 
H-3 3.907 3.902 3.939 - 3.931 
H-4 3.792 3.790 3.832 3.830 
H-5 4.856 4.830 - 4.871 4.839 
CH3 1.173 1.174 1.264 - 1.260 

H-1 4.454 4.451 4.512 4.451 4.517 4.453 
H-2 3.496 3.494 3.928 3.985 3.928 3.970 
H-3 3.654 3.651 3.745 3.708 3.747 3.712 
H-4 3.890 3.899 3.935 3.902 3.940 3.909 
H-5 3.595 3.595 3.719 3.573 3.720 3.573 
H-6 3.740 3.742 3.799 3.768 3.797 3.769 
H-6' 3.731 3.724 3.757 3.718 3.765 3.713 
NAc - - 2.069 2.044 2.069 2.045 

describing the GalNAcfl(1M)GlcNAc and the Fuca(1-  
3)GlcNAc linkages in GN(F)Gn, respectively, corre- 
spond with those of G(F)Gn (Table II). Like the Fuc and 
Gal residues in G(F)Gn, the Fuc and GalNAc residues 
in GN(F)Gn form a stacking complex, wherein the aver- 
aged distance between GaI /GalNAc H-2 and Fuc H-5 
is 2.6 A (Fig. 4), which is a realistic value for nuclear 
Overhauser effects. It should be noted that the trajecto- 
ries of  q~v of  reference Galfl(1-4)[Fuc~(1-3)]GlcNAcfl- 
OMe shows a rapid change between two different dihe- 
drals [14], whereas the trajectory of q~v of G(F)Gn and 
of GN(F)Gn (Fig. 3) show basically one dihedral. Possi- 
bly, this difference in flexibility stems from the use of  
united atoms for the hydroxyl groups in the CHEAT 
forcefield. 

4. C O N C L U D I N G  R E M A R K S  

Functionally purified preparations of  human milk 
~3/4-fucosyltransferase have been used in the enzyme 

assisted synthesis of  ~(1 3)-fucosylated oligosac- 
charides, including Le x [7-9,12]. Here it is demonstrated 
that the enzyme can also be used to produce the 
GalNAc-containing variant of  Le x in high yield. This 
finding implies that for a Ga l f l ( l~ )GlcNAcf l l -R  spe- 
cific fucosyltransferase the OH group at C-2' can be 
replaced by a NAc group without a gross effect on the 
enzyme activity. Interestingly, it has been found previ- 
ously that the Galfl(1M)GlcNAcfll-R ~(2-6)-sialyl- 
transferase whether isolated f rom rat liver [10,21] or 
bovine colostrum [22] also can act on GalNAcfl(1-  
4)GlcNAcfl l-R with high efficiency. In view of these 
results it will be of  interest to investigate whether other 
Galfl(1M)GlcNAcfll-R specific glycosyltransferases 
such as a(2 3)-sialyltransferase [23], a3-galactosyl- 
transferase [24] and fl3-N-acetylglucosaminyltransfer- 
ase [25] are similarly capable of  acting on GalNAcfl(1-  
4)GlcNAcfll-R. 

The average dihedrals and the corresponding fluctua- 
tions in the trajectories, and therefore the time-averaged 

136 



Volume 334, number 1 FEBS LETTERS November 1993 

03 

£3 
v 

0 
¢0 
~-= 

o o 

z 
~J 

o 
~-= 

I 

i ~ i i i L L i i 

A 

0 Time (ps) 1000 

03 

121 
v 

O 

o 

Z 

i i i i i h ~ i i 

B 

Time (ps) 1000 

O 
cO 

03 
tD Q 

o 
- I  

I t .  

e 

J i i i i i i i 

C 

w , ~ ,  ~ l m  p ~  "V'~lv -~ - ~ r "  l ~ .~ r l ~ r  m " l ] F "  ~ "  m~'lt~ m"m~m111 

Q~ 
D 

o 

LL 

O 
¢O 
T "  

O 

i i i i L i L i i 

D 

O O 
cO ¢0 . . . . . .  

"7 0 1000 "7 0 
Time (ps) Time (ps) 1000 

Fig. 3. The 1-ns trajectories of the interglycosidic torsion angles in GN(F)Gn: A, ~GN; B, 7JGN; C, ~v; D, ~u v. 

conformations of  G(F)Gn and GN(F)Gn obtained from 
the MD simulations, show great similarity. Conse- 
quently, it can be concluded that the substitution of  a 
hydroxyl function by a N-acetyl group, converting Gal 
into GalNAc, does not have a profound influence on the 
conformation of  the trisaccharides. So far, the GalNAc 
variant of  Le x, carried on oligosaccharide alditols, re- 
leased from sea squirt H-antigen [1], has been shown to 
induce allergic skin reactions in humans [26]. However, 
no role in interaction processes, as found for Le x [27] 
and carbohydrate ligands having the Le x epitope as 
structural element (sialyl-Le x, VIM-2 structure, sulfo- 

Le x) [28-30], has been reported. In this context, it 
should be mentioned that comparison of  the time-aver- 
aged conformations of  G(F)Gn and GN(F)Gn shows 
that Gal OH-2 and GalNAc NAc are oriented to the 
outside of  the models. Since these functional groups 
seem to be explicitely present on the surface of  the oligo- 
saccharides, the replacement of  Gal OH-2 by a NAc 
group in the Le x sequence may affect the binding with 
carbohydrate-recognizing macromolecules. Whether 
(and if so to what extent) such a replacement has indeed 
a modulating effect on interactions events, mediated by 
LeX-containing ligands, remains to be established. 

Table II 

Interglycosidic dihedral angles of the time-averaged conformations of G(F)Gn and GN(F)Gn given in degrees, together with those of reference 
Galfl(1 ~) [Fuca(  1-3)]GlcNAcfl-OMe 

Compound ~ / q)GN 'PG / ~GN q~v 7% 

G(F)Gn (run 1) -65 (+ 9) 131 (+ 8) -61 (+ 11) -86 (+ 9) 
G(F)Gn (run 2) -65 (+ 9) 131 (+ 7) -61 (+ 11) -86 (+ 10) 
GN(F)Gn -62 (+ 10) 129 (+ 8) -56 (+ 10) -84 (+ 9) 
Reference: 

MD1 -61 (__ 9) 128 (_ 7) -59 (+ 20) -88 (_ 10) 
MD2 -64  (+ 10) 128 (_+ 8) -64 (+ 21) -88 (+ 11) 
conformer A -57 122 -45 -96 
conformer B -65 132 -83 -97 

Conformations of GOF)Gn and GN(F)Gn were calculated from 1 ns molecular dynamics simulations using the force field CHEAT. The data of 
reference Galfl(l~,)[Fuca(1-3)]GlcNAcfl-OMe were collected from conformational energy calculations (conformer A and B) and from 300 ps 
molecular dynamics simulations (MD1 and MD2) using the force field CHARMm [14]. Interglycosidic torsion angles are defined as follows: 
• G/~GN=Gal/GalNAc O 5 Gal/GalNAc C-1 GIcNAc O-4-GlcNAc C-4; ~uG/7"rN=GaI/GalNAc C-1 GlcNAc O-4-GlcNAc C-4- 
GlcNAc C-3; ~v = Fuc O-5-Fuc C-1-GlcNAc O-3-GIcNAc C-3; ~F F = Fuc C-1 GlcNAc O-3-GlcNAc C-3 GIcNAc C-2. The values given in 

brackets are the root-mean-square fluctuations in the angles observed during the simulations. 
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Gal~,(1-4)TNAc~-OEt 
Fuca(1-3) 

GalNAc~(1-4)GIqNAcI~-OMe 
Fuc(x(1-3/ 

A 

~ GIcNAc 

F,,o I s 

I I"  ~,l 

B 

GIcNAc 

" ~ ~  NAc 

C 

x /   ..,oEt 
/X 

Fig. 4. Diagram of the time-averaged conformations of (A) G(F)Gn, (B) GN(F)Gn and (C) superimposition of both models (cf. Table II). The 
ring-skeletons of the GlcNAc residues are presented from the same view-point. 
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