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Oxidation of  the bifunctional wheat inhibitor of  subtilisin and endogenous c~-amylase catalyzed by horseradish peroxidase results in the loss of  
the inhibitory activity against both enzymes. The enzymatic oxidation is accompanied by modification of one methionine and two tryptophan 
residues in the protein. The results obtained, together with data on chemical modification and limited proteolysis, allow us to conclude that 
Met 34 Ala 35 is the reactive site of  the inhibitor responsible for the interaction with subtilisin. It is supposed that the reactive site of  the inhibitor 

responsible for the interaction with c~-amylase contains one or two tryptophan residues. 
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1. I N T R O D U C T I O N  

Bifunctional proteins able to inhibit the activity of 
both endogenous germination-specific s-amylase of  
seeds and microbial serine proteinases were isolated 
from seeds of  some cereals [1-6]. All these proteins be- 
long to the soybean trypsin inhibitor (Kunitz) family. 
The inhibitors contain two separate sites for binding of 
proteinase and s-amylase [1,7]. The wheat inhibitor 
contains the critical methionine residue, modification of 
which results in the loss of  the inhibitory activity against 
subtilisin [7,8]. At the same time, X-ray structure analy- 
sis showed that the molecule of the bifunctional inhibi- 
tor contained Gly66-Ala 67 residues at the position corre- 
sponding to Arg64-Ile 65 of  the reactive site of  the soy- 
bean trypsin inhibitor. Nevertheless, on incubation of 
the inhibitor with proteinase K, the peptide bond be- 
tween Ile 75 and Ser 76 is hydrolyzed [9]. 

In order to obtain additional information on the 
structure of the reactive sites, the bifunctional wheat 
inhibitor has been subjected to oxidation catalyzed by 
horseradish peroxidase. The results obtained, together 
with our earlier data on chemical modification and lim- 
ited proteolysis [7,10], allow us to conclude that one 
methionine residue occupies the P1 position of  the reac- 
tive site responsible for the interaction with subtilisin. 
It is suggested that the reactive site responsible for the 
interaction with s-amylase contains one or two trypto- 
phan residues. 

*Corresponding author. Fax: (7) (095) 954 2732. 

2. MATERIALS AND METHODS 

The inhibitor was isolated from wheat seeds using affinity chroma- 
tography on immobilized subtilisin [5]. Subtilisin Carlsberg and barley 
malt s-amylase II were purchased from Sigma Chemicals Co., and 
horseradish peroxidase was a product of Reanal Co. 

To assay inhibitor activity, increasing amounts of the inhibitor were 
added to medium containing a constant amount of  subtilisin or ~- 
amylase. The mixture was incubated for 5 min at room temperature, 
and then the residual enzyme activity was determined. The subtilisin 
activity was measured using N-CBZ-L-Ala-L-AIa-L-Leu p-nitroanilide 
[11], and the s-amylase activity was evaluated using amylopectin azure 
as substrate [12]. 

The enzymatic oxidation of the inhibitor was performed as follows. 
The protein was incubated with optimal concentrations of  horseradish 
peroxidase in the presence of  H202 and I- for 10 min at 37°C and pH 
6.6, and then NaN 3 was added to stop the reaction. The oxidized 
inhibitor was separated by chromatography on a Sephadex G-75 col- 
umn. 

The inhibitor-subtilisin complex was prepared by mixing the inhib- 
itor with equimolar amounts of subtilisin in Tris-HC1 buffer, pH 8.0. 
After oxidation with horseradish peroxidase the inhibito~subtilisin 
complex was dissociated by adjusting the pH to 4.0. Under these 
conditions, complete inactivation of the released subtilisin occurs. 

The amino acid composition of the inhibitor was determined after 
hydrolysis with 5.7 N HC1 for 24 h at 110°C. Cysteine and methionine 
were determined after oxidation with performic acid. To determine 
tryptophan, the inhibitor was hydrolyzed with methane-sulfonic acid. 

3. RESULTS AND DISCUSSION 

The oxidation of  the bifunctional wheat inhibitor cat- 
alyzed by horseradish peroxidase in the presence of io- 
dide ions results in a loss of inhibitory activity against 
both subtilisin and barley s-amylase II (Fig. 1). When 
I- was replaced with CI-, no inactivation of the inhibitor 
was observed. The degree of oxidation depended on the 
concentration of  the components of the peroxidase- 
H202-I- system, and, in the absence of  any of  them, no 
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Fig. 1. Inhibition of subtilisin (A) and 0~-amylase (B) with the bifunc- 
tional wheat inhibitor. Native inhibitor (©); inhibitor subjected to 

enzymatic oxidation (e). 

oxidation occurred. The amino acid assay of  the oxi- 
dized protein (Table I) showed that the enzymatic oxi- 
dation is accompanied by modification of  one of the two 
methionine and two tryptophan residues. Thus, horse- 
radish peroxidase oxidizes the same amino acid residues 
in proteins as does myeloperoxidase [14]. In contrast to 
horseradish peroxidase, however, myeloperoxidase was 
active in the presence of  both I- and CI- ions. 

As was shown earlier, the treatment of  the bifunc- 
tional wheat inhibitor with monoiodoacetic acid and 
chloramine T under conditions causing modification of 
methionine residues in proteins was accompanied by the 
loss of  activity against subtilisin [5,7]. On this basis we 
may conclude that the loss of  the inhibitory activity 
against subtilisin on oxidation catalyzed by horseradish 
peroxidase is a result of modification of the methionine 
residue. 

The activity of  the inhibitor subjected to the enzy- 
matic oxidation in the complex with subtilisin remains 
at a rather high level and is easily detected after dissoci- 
ation of the inhibito~subtilisin complex in an acidic 
medium (Fig. 2). Thus, all the results obtained support 
the assumption that the reactive site of  the inhibitor 
contains a methionine residue. In previous work, we 
isolated a fragment with a high inhibitory activity 
against subtilisin from the inhibitor hydrolysed with 
staphylococcal protease V8 [10]. The fragment was 
found to be the N-terminal part of the inhibitor mole- 
cule and contained a Met 34 residue (based on the pri- 
mary structure determined by Maeda [15]). On the basis 
of  the aforesaid evidence, we may conclude that the 
reactive site of the bifunctional wheat inhibitor includes 
Met34~la  35. It is noteworthy that the methionine resi- 
due at the P1 position was detected in the reactive sites 
of a number of  protease inhibitors of  microbial serine 
proteinases [16-18]. As follows from the results ob- 
tained, the ability of methionine residues to be enzy- 
matically oxidized under mild conditions is a possible 
way to regulate proteolytic activity. 

There is little evidence for the composition and struc- 
tures of the reactive sites of bifunctional inhibitors re- 
sponsible for the interaction with ~-amylase. In our 
previous works we have shown that modification of 
methionine residues in the inhibitor molecule has no 
effect on its ability to inhibit ~-amylase [7,8]. Thus, the 
loss of  activity against ~-amylase on oxidation cata- 
lyzed by horseradish peroxidase (Fig. 1 B) seems to re- 
sult from modification of one or both tryptophan resi- 
dues in the protein molecule. It is known that in some 
microbial inhibitors of c~-amylase, there is a critical 
tryptophan residue in the conserved sequence Trp-Arg- 
Tyr [19]. In the bifunctional inhibitor of  subtilisin and 

Table I 

Amino acid composition of the bifunctional wheat inhibitor 
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Fig. 2. Inhibition of subtilisin with the oxidized bifunctional inhibitor. 
Inhibitor subjected to the enzymatic oxidation in the free state (e); 
inhibitor subjected to the enzymatic oxidation in the complex with 

subtilisin followed by dissociation in the acidic medium (n). 

Native Oxidized 

Asp 17.2 17.1 
Thr 8.4 8.2 
Ser 10.7 10.9 
Glu 12.3 12.0 
Pro 14.3 14.0 
Gly 18.8 19.3 
Ala 15.5 15.9 
1/2 Cys 3.9 4.3 
Val 13.3 13.4 
Met 1.7 0.9 
lie 6.7 6.6 
Leu 11.0 11.0 
Tyr 4.7 4.5 
Phe 5.6 5.9 
His 8.1 7.5 
Lys 6.4 6.2 
Arg 13.9 13.6 
Trp 2.1 0.0 

The composition has been adjusted to Mr 20,500 for the protein. 
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endogenous  0~-amylase from barley, one of  the three 
t ryp tophan  residues is readily oxidized with N-bro-  
mosuccinimide without  any loss of activity against  ~- 
amylase, while modif icat ion of the other two residues 
results in the complete loss of this activity [20]. As has 
been shown above,  in the bi funct ional  wheat inhibitor,  
both  t ryp tophan  residues are readily oxidized in the 
presence of  horseradisch peroxidase and  the enzymatic  
oxidat ion results in the loss of the inhibi tory  activity 
against  co-amylase. Thus,  we can assume that  the reac- 
tive site of the b i funct ional  wheat inhibi tor  responsible 
for the interact ion with c~-amylase contains  one or two 
t ryp tophan  residues. 
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