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The unicellular marine dinoflagellate, Prorocentrum lima, an established producer of okadaic acid (OA), was shown to contain a type-1 protein 
phosphatase (PP-1) the biochemical profile of which on Mono-Q and Superdex-75 fast protein liquid chromatography was identical to the catalytic 
subunit of PP-1 from rabbit skeletal muscle. Purified P lima PP-1 (apparent molecular mass 37.5 kDa) was highly sensitive to inhibition by 
mammalian protein phosphatase inhibitor-1 and inhibitor-2, and to OA itself. A 6-7-fold increase in OA production by P lima, when grown under 
controlled conditions, correlated with an up to 300-fold increase in P lima PP-1 activity. Furthermore, P lima did not contain any detectable 
type-2A protein phosphatase activity. This study represents the first identification of a serine/threonine protein phosphatase in a dinoflagellate. 
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1. INTRODUCTION 

Reversible phosphorylation of proteins on phospho- 
serine, phosphothreonine and phosphotyrosine residues 
by protein kinases and phosphatases is widely accepted 
as a principal mechanism by which eukaryotic cells re- 
spond to extracellular signals [1,2]. There is increasing 
evidence that certain species of marine/freshwater cya- 
nobacteria and dinoflagellates produce a variety of po- 
tent inhibitors of vertebrate and invertebrate serine/ 
threonine protein phosphatases [3-5], which have been 
effective in the delineation of signal transduction path- 
ways in higher eukaryotes [6,7]. One class of inhibitor 
includes C38 diarrheic polyether fatty acids of the oka- 
daic acid (OA) family [6,8], and a second class includes 
the more recently identified hepatotoxic cyclic peptides 
of the microcystin and nodularin families [9-11]. The 
marine dinoflagellate, Prorocentrum lima, a single- 
celled benthic eukaryote, is one of a panel of eukaryotic 
dinoflagellate species which produce a variety of toxins, 
including OA [12]. The catalytic subunits of type-1 and 
2A protein phosphatases (PP-lc and PP-2Ac) are po- 
tently inhibited by OA and related congeners in a di- 
verse range of higher eukaryotes [6,8] and more impor- 
tantly have been shown to be the targets for OA in vivo 
[7]. However, the role or target(s) of these toxins in the 
marine environment or in the flagellates which produce 
them has not been previously addressed. 

The purpose of this study was to identify the target(s) 
of OA and begin to establish a role for this tumor pro- 
moter in a dinoflagellate which itself produces signifi- 
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cant intracellular OA concentrations (up to 0.02% of 
total cell mass). The serine/threonine protein phos- 
phatases are highly conserved proteins, with respect to 
both substrate and inhibitor specificity [13-15] and have 
been identified in a diverse range of eukaryotes [13] 
including plants [16,17] and some protists [18- 20]. In 
this paper, we report identification and characterisation 
of a type-1 protein phosphatase in the OA-producing 
marine dinoflagellate P lima, which is biochemically 
indistinguishable from rabbit skeletal muscle PP- 1 c [21]. 
P. lima PP-1 is sensitive to inhibition by nanomolar 
concentrations of OA and its regulation by this inhibi- 
tor in vivo may represent a primitive signalling pathway 
involving reversible phosphorylation in this early 
evolved marine eukaryote. 

2. MATERIALS AND METHODS 

2.1. Cell strain and culture conditions 
Benthic marine dinoflagellate isolate, Proroeentrum lima strain 712, 

was from the North Eastern Pacific Culture Collection (NEPCC), 
Department of Oceanography, University of British Columbia. Cells 
were cultured in natural sea water with nutrient and vitamin supple- 
ments [22]. Cultures were maintained without agitation at a constant 
temperature of 16°C, with 14/10 h light/dark cycles. 

2.2. Preparation of cell extracts 
Cells were harvested during late exponential growth phase by cen- 

trifugation at 2,500 x g. Extraction buffer (3 ml) comprising 50 mM 
Tris-HCl, pH 7, 0.1 mM EDTA, 0.1 mM EGTA, 0.1% fl-mercap- 
toethanol and 0.01% Brij 35, was added per g wet weight of either fresh 
cell pellet or pellet which had been flash frozen and stored at -20°C. 
A proteinase inhibitor cocktail (Boehringer-Mannheim) comprising 
antipain (50/lg/ml), (4-amidinophenyl)methanesulfonyl fluoride (10 
/~g/ml), aprotinin (2/lg/ml), bestatin (10/.tg/ml), chymostatin (20/lg/ 
ml), E-64 (10/lg/ml), EDTA-Na2 (50/ag/ml), leupeptin (0.5/tg/ml), 
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pepstatin (0.7 ¢tg/ml) and phosphoramidon (60 gg/ml) was also pres- 
ent. Cell suspensions were sonicated employing 45 s pulses with equiv- 
alent rest periods on ice. Resulting homogenates were centrifuged at 
15,850 x g for 20 min at 4°C. Supernatants were subsequently dialysed 
against 12 vols. extraction buffer employing Amicon 10 concentrators 
at 1,000 x g and 4°C. After addition of 10% v/v glycerol, retentates 
were flash frozen and stored at -20°C. Protein concentrations were 
determined by BioRad dye binding assay employing bovine albumin 
as standard. 

2.3. PP-lc assay 
Aliquots (10 HI) of dinoflagellate extract were analyzed for their 

ability to dephosphorylate 32p-radiolabelled glycogen phosphorylase 
a (EC 2.4.1.1). Preparation of components for this phosphorylase 
phosphatase assay was described previously [23]. To establish the 
identity of type 1 and/or 2A protein phosphatases, activity was meas- 
ured in the presence and absence of a panel of inhibitors frequently 
used to characterise these enzymes. Protein phosphatase inhibitor-1 
active peptide (PPIP-46) phosphorylated by cAMP-dependent protein 
kinase [24], and inhibitor-2 [25] were employed at final concentrations 
of 0.5 ,uM and 1.0 HM, respectively. OA (5/IM and 5 nM), microcys- 
tin-LR [4] (1.7 nM) and non-specific NaF (30 mM) were also em- 
ployed. Assays were conducted such that phosphorylase phosphatase 
activity was not greater than 1.0 mU/ml. 

2.4. Fast protein liquid chromatography (FPLC) 
Dinoflagellate extracts were fractionated employing Mono-Q anion 

exchange columns developed with a linear gradient of 100 to 700 mM 
NaC1 in running buffer (20 mM triethanolamine-HC1 pH 7, containing 
0.1 mM EGTA, 10% glycerol and 0.01% Brij 35) [21]. Column frac- 
tions were screened for phosphorylase phosphatase activity in the 
presence and absence of inhibitor-1 peptide (10 nM). Active fractions 
were pooled and subjected to Centricon-10 concentration at 1,000 x g 
and 4°C. Concentrates were then chromatographed on a Superdex-75 
gel filtration column developed with 20 mM triethanolamine-HC1, pH 
7, containing 100 mM NaC1, 0.1 mM EGTA, 10% glycerol, 0.1% 
fl-mercaptoethanol and 0.01% Brij 35, at a flow rate of 0.1 ml/min. 
Molecular weight standards (13,700~00,000) were from Pharmacia. 

2.5. IC~o value determinations 
ICs0 values for the inhibition of P lima PP-I by OA and inhibitor-1 

peptide were determined, with final enzyme activity between 0.8 and 
1.6 mU/ml per assay, where 1 unit is defined as the amount of enzyme 
activity required to dephosphorylate 1 ¢tmol of phosphorylase a per 
min [26]. 

2.6. Liquid chromatography and capillary electrophoretic analyses of 
OA 

P lima cell filtrates were fractionated on a Vydac C18 reverse phase 
column and active fractions analysed by capillary electrophoresis 
(Beckman PACE 2100), as described previously [4]. 

3. RESULTS 

3.1. Identification of a type-1 protein phosphatase (PP- 
1) in the cytosolic extract of the OA-producing ma- 
rine dinoflagellate, Prorocentrum lima 

Employing a panel of inhibitors which have been 
used to characterise serine/threonine protein phospha- 
tase activity in tissue extracts [26,27], it was determined 
that a type-1 protein phosphatase was present in the 
dinoflagellate P lima (Fig. 1). P. lima PP-1 dephos- 
phorylated glycogen phosphorylase, a known physio- 
logical substrate of this enzyme in higher eukaryotes 
[13,28]. This activity was strongly inhibited in the pres- 
ence of a fully active peptide from protein phosphatase 

"6 
f . -  

,4--  t-  
O 100 

~_ 8O 
t--- 

60 I--- 
k_J 

la3 60 

32 2c 
e~ 

o 
32 
a .  0 

Fig. 1. The identification of type-1 protein phosphatase activity in a 
dialysed extract from P lima. Serine/threonine type protein phosphat- 
ase activity was assayed employing [32P]glycogen phosphorylase as 
substrate in the presence of a number of inhibitors (concentrations 
indicated). The activity is reported as a percentage of that observed 

in the absence of added inhibitors relative to the control. 

inhibitor-1 and by protein phosphatase inhibitor-2, 
which are potent and specific inhibitors of type-1 pro- 
tein phosphatases from mammalian sources [13,24]. P. 
lima PP-1 was sensitive to inhibition by OA at con- 
centrations (5/IM) expected to inhibit both PP-1 and 
PP-2A, but only slightly inhibited (less than 10%) at 
concentrations (5 nM) expected to inhibit PP-2A only. 
These data are consistent with the identification of the 
P. lima enzyme as a type-1 protein phosphatase. Type 
2A protein phosphatases (ICs0 for OA = 0.1 nM), if 
active, would have been completely inhibited at the con- 
centrations of OA utilised in these experiments [6,8,29]. 
P lima PP-1 was also sensitive to inhibition by the cyclic 
heptapeptide toxin microcystin-LR, although the con- 
centration employed (1.7 nM), suggested that P. lima 
PP-1 may not be as potently affected as the form of the 
enzyme present in mammalian tissues [26]. It is impor- 
tant to note that no phosphorylase phosphatase activity 
was detectable in extracts in P. lima prior to dialysis (see 
section 2). This observation was consistent with the 
presence of an endogenous protein phosphatase inhibi- 
tor in the dinoflagellate. The identification of this en- 
dogenous inhibitor as OA in all P. lima cultures utilised 
for phosphorylase phosphatase determinations (up to 
215/lg/g wet weight) was confirmed by capillary electro- 
phoresis, following extensive buffer exchange of the ex- 
tract (Fig. 2). 

3.2. Further characterisation of P. lima PP-1 by Mono- 
Q anion exchange chromatography and Superdex- 
75 gel permeation chromatography 

The purified catalytic subunits of PP-1 and PP-2A 
(PP-lc and PP-2Ac) from rabbit skeletal muscle have 
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Fig. 2. Optical resolution and identification of OA present in P lima 
by micellar capillary electrophoresis. Panel A represents the elution 
position of OA standard (0.5 ng), panel B represents the resolution of 
OA from the P lima sample (0.54 ng) and panel C represents the 
confirmation of its identity by a characteristic increase in peak height 

upon spiking with the standard sample (1.04 ng, total). 

characteristic elution positions when chromatographed 
on Mono-Q anion exchange FPLC columns. An extract 
f rom P. lima was subjected to Mono-Q chromato-  
graphic analysis (Fig. 3, panel A). Its elution position 
was almost identical to that of  rabbit  muscle PP-lc  
(Table I), and its identity as a type-1 protein phospha- 
tase was further confirmed by complete inhibition of  the 
phosphorylase phosphatase activity of  this enzyme in 
the presence of  inhibitor-1 peptide (10 nM). These re- 
sults were suggestive of  a similar net charge and pr imary 
sequence between the two forms of  the enzyme. The 
elution position of P lima PP-1 was characteristic of  the 
catalytic subunit, with no bound regulatory subunits 
being detected, as are present in higher eukaryotes 
[13,30]. No type-2A protein phosphatase activity was 
detected in P lima, in direct contrast  to the closely 
related dinoflagellate Prorocentrum micans (which is 
not a producer of  OA) where type-1 and -2A protein 
phosphatase activity could be resolved on Mono-Q 
FPLC columns and eluted at salt concentrations close 
to PP-1 c and PP-2Ac from rabbit  skeletal muscle (data 
not shown). 

Superdex-75 gel filtration of the active PP-1 fractions 
f rom Mono-Q anion exchange chromatography,  re- 
vealed this protein to have an apparent  molecular mass 
of  37.5 kDa  (Fig. 3, panel B). This data compares well 
with values reported for PP-1 c from a variety of  higher 
eukaryotes, including mammals  (Table I) [13]. P lima 

PP-1 purified f rom Superdex-75 chromatography was 
also strongly inhibited in the presence of  inhibitor-1 
peptide (Fig. 3, panel B). 

3.3. Inhibition of purified P. lima PP-1 by marine toxins 
and mammalian inhibitor proteins 

The concentrations of  OA and inhibitor-1 peptide 
required to inhibit phosphorylase phosphatase activity 
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Fig. 3. Chromatographic analysis of phosphorylase phosphatase ac- 
tivity from P lima. Panel A represents anion exchange chromato- 
graphic analysis on a Mono-Q column. Protein phosphatase activity 
is measured in the presence (D-D) and absence (e-e) ofphosphorylated 
PPIP-46 (10 nM), a specific inhibitor of type-1 protein phosphatase. 
The broken line represents the salt gradient. Panel B represents Super- 
dex-75 gel permeation chromatographic analysis of the active frac- 
tions from anion exchange chromatography. The elution of a single 
peak of activity in the presence (c~-[]) and absence (e-e) of 
phosphorylated PPIP-46 (10 nM) is shown in relation to relevant 

molecular weight standards. 
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Table I 

Compar ison  of  rabbit skeletal muscle PPI-c and P. lima PPI 

Rabbit  skeletal Prorocentrum lima 
muscle PP-1 
PP-lc  

Substrate 
Phosphorylase a Yes Yes 

Inhibitors 
Okadaic acid ICs0 = l0 nM  IC50 = 10-20 nM 
Inhibitor-1 ICs0 = 0.5 nM  ICs0 = 3.0 nM 
Inhibit or-2-microcystin- 

LR N a F  Yes Yes 

Chromatographic properties 
Elution position on Mono-  

Q FPLC 
Apparent  molecular mass  

on Superdex-75 and/or 
SDS-PAGE 

295 m M  NaC1 310 m M  NaC1 

33 37 kDa 37.5 kDa 

ICs0 values were determined using the purified enzyme (from active 
fractions) following anion exchange and gel permeation chromatogra-  

phy. Determinations were as detailed in section 2. 

of P. lima PP-1 by 50% were determined. Employing a 
range of concentrations of both inhibitors, ICs0 values 
were determined to be 10-20 nM and 3 nM for OA and 
inhibitor-1 peptide, respectively (Table I). These values 
compare well with ICs0 values reported for PP-lc iso- 
lated from diverse eukaryotic sources [6,13,24]. 

3.4. Comparative analysis" of intracellular R lima OA 
concentration and PP-1 activity 

Production of OA by different P. lima isolates was 
found to vary significantly, depending upon the sea 
water used as a nutrient source. It was therefore of 
interest to establish whether or not PP-1 activity might 
fluctuate in conjunction with altered levels of OA in P. 
lima. Comparative analyses of equivalent g/ml dialysed 
extracts prepared from two separate cultures of P. lima 
(NEPCC strain #712) (grown under moderate vs. high 
salt) natural sea water nutrient conditions, consistently 
revealed a 6-7-fold increase in the levels of OA between 
these extracts (typically 35 pg/g vs. 215 pg/g, respec- 
tively) as determined by LC and CE analysis, concomi- 
tant with a 300-fold increase in PP-1 activity (0.17 and 
54 mU/ml, respectively). 

4. DISCUSSION 

At least four major types of eukaryotic serine/threon- 
ine protein phosphatase catalytic subunits are recogni- 
sed which have been characterized according to their 
substrate specificity [13], association with regulatory/ 
targeting subunits [13,30], and regulation by specific 
thermostable inhibitory proteins [13] and environ- 
mental toxins including OA [6]. According to this con- 

vention and direct comparative biochemical analysis 
with the catalytic subunit of rabbit skeletal muscle PP-1, 
we have characterised a type-1 protein phosphatase in 
the OA-producing marine dinoflagellate Prorocentrum 
lima. PP-1 purified from P lima is biochemically indis- 
tinguishable from the rabbit skeletal muscle form of the 
enzyme (PP-lc) with respect to substrate (phosphory- 
lase a), inhibitor specificity and chromatographic be- 
haviour [13,21,28]. To our knowledge this study repre- 
sents the first identification and characterisation of a 
protein phosphatase in a marine phytoflagellate and its 
presence in this early evolved eukaryote concurs with a 
growing body of evidence for the presence of these 
highly conserved enzymes in a number of protists [18- 
20]. 

A regulatory subunit associated form of PP-1 in P. 
lima was not directly observed. Regulatory subunits 
play a role in determining the subcellular location and 
modifying the specificity of the serine/threonine protein 
phosphatases in mammalian cells [30], and have also 
been observed in higher plants [16,17]. In addition, 
type-2A protein phosphatase activity was not detected, 
however, the absence of this protein phosphatase in the 
dinoflagellate awaits further confirmation as the possi- 
bility exists that it may be permanently inactivated in P. 
lima extracts by the strong interaction with its inhibitor 
OA [311. 

The biochemical similarity between P. lima PP-1 and 
rabbit skeletal muscle PP-lc reported here is consistent 
with the strong conservation of the primary sequence of 
this enzyme throughout evolution [13,15]. Furthermore, 
employing degenerate primers corresponding to highly 
conserved regions in the catalytic domain of mamma- 
lian PP-lc, we have amplified a portion (10%) of the 
cDNA corresponding to the P. lima PP-1 protein which 
exhibits a high degree of homology (> 65% identity) 
with cDNA for rabbit skeletal muscle PP-lc. The com- 
plexity of the dinoflagellate genome [32] coupled with 
prohibitively long doubling times for these organisms, 
has at present facilitated only one other study of a pro- 
tein at the cDNA level in these organisms [33]. 

The dinoflagellates are related to the ciliates [34], 
both having diverged well before the Metazoa. In the 
ciliate Paramecium, exogenously added OA has been 
shown to enhance backward swimming in response to 
depolarizing stimuli [35], suggesting a role for reversible 
phosphorylation in the regulation of voltage gated Ca 2+ 
channels controlling swimming behaviour in this organ- 
ism. Co-localization of a type-1 protein phosphatase 
(PP-1) to voltage-dependent C a  R+ channels in excitable 
ciliary membranes [19,35], and identification of a puta- 
tive PP-1 substrate (p42), which is hyperphosphorylated 
directly in response to OA and other specific PP-1 inhib- 
itors [36], supports a role for PP-1 in regulating motility 
in this ciliate. 

The identification of a type-1 protein phosphatase in 
P. lima is clearly significant owing to the endogenous 
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presence of  OA,  a po ten t  and  specific inhibi tor  of  eukar-  
yotic PP- l c /PP-2Ac  [6] and  of P lima PP-1 itself. I f  B 
lima PP-1 represents an  intracel lular  target for OA, an 
obvious  potent ia l  role for OA in inhibi t ing  PP-1 in vivo 
might  be to regulate behavioura l  and  physiological re- 
sponses in this flagellate which are control led by revers- 
ible phosphoryla t ion .  The intracel lular  regulat ion of P. 
lima PP-1 by endogenous  OA or the apparen t  resistance 
of  the protist  to this toxin represents an impor t an t  ques- 
t ion to be addressed, since reversible prote in  phosphor-  
yla t ion is recognized as one of the most  widely used 
mechanisms for signal t ransduc t ion  in eukaryot ic  cells 
[37]. In  this regard, we have obta ined  pre l iminary evi- 
dence for a re la t ionship between OA levels and  P. lima 
PP-1 activity in this mar ine  dinoflagellate. In  a n u m b e r  
of eukaryot ic  cells, exogenously added OA enhances the 
presence of the AP-1 t ranscr ip t ion factor complex by 
inhib i t ion  of  protein  phosphatase  activity, a mechanism 
which occurs via t ranscr ip t ional  act ivat ion of  jun and  
fos  genes [38,39]. The apparen t  upregula t ion  of PP-1 
activity which occurs concomi tan t ly  with increased lev- 
els of  OA, might  be explained by indirect t ranscr ip t ional  
regulat ion of  the P. lima PP-1 gene by intracel lular  OA. 
We are current ly  a t tempt ing  to test this hypothesis fur- 
ther. 
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