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Glycosyl-phosphatidylinositol-specific phospholipase D (GPI-PLD) is an amphiphihc protein which, in serum, is associated with high-density 
lipoproteins (HDL). It is shown that the major component of the HDL fraction. apohpoprotein A-I (apo A-I), is responsible for this association. 
In the absence of apo A-I. purified GPI-PLD occurred as virtually inactive aggregates which became disaggregated by apo A-I. The enzymelapo 
A-I complex efficiently hydrolyzed the solubthzed GPI-anchored substrate, acetylcholinesterase. Triton X-100 was also able to dissociate aggregated 

GPI-PLD. however, it strongly inhibited enzyme activity at detergent concentrations above the critical mtcellar concentration. 

Glycosyl-phosphatidylinositol: Phosphohpase D: Acetylchohnesterase; High-density lipoprotein: Apolipoprotein A-I 

1. INTRODUCTION 

A large number of cell surface proteins have been 
shown to be attached to cell membranes by a glycosyl- 
phosphatidylinositol (GPI)- anchor [l] from where they 
may be hydrolyzed by GPI-specific phospholipases. In 
mammals, the only purified and well characterized GPI- 
specific phospholipase is of the D-type (GPI-PLD) pro- 
ducing phosphatidic acid as one of the products. GPI- 
PLD was originally discovered in serum [2,3] and later 
in whole brain [4], neurons [5], and cerebrospinal fluid 
[6], in the islets of Langerhans [7], liver [8,9], liver mast 
cells [lo], and milk [6]. GPI-PLD has been purified and 
characterized from serum [6,1 l-131, and its primary se- 
quence is known from bovine liver cDNA [S]. 

sterase (AChE). Triton X-100 was also able to dissoci- 
ate aggregated GPI-PLD, however, it inhibited enzyme 
activity at detergent concentrations above the critical 
micellar concentration (CMC). A preliminary account 
of the present results has been presented previously [14]. 

2. MATERIALS AND METHODS 

2.1. Biological material 

GPI-PLD is an amphiphilic protein which, in the ab- 
sence of a detergent, forms high molecular weight ag- 
gregates, and in serum, is associated with high-density 
lipoproteins (HDL) [6]. We now report that GPI-PLD 
is able to associate with the major component of the 
HDL fraction, apolipoprotein A-I (apo A-I) which dis- 
aggregates the high molecular weight forms of GPI- 
PLD. While aggregated GPI-PLD is virtually inactive, 
the enzyme/ape A-I complex efficiently hydrolyzes the 
solubilized GPI-anchored substrate, acetylcholine- 

GPI-PLD was purified from bovine serum essentially as described 
by Hoener and Brodbeck [6]. The membrane form of ace- 
tylcholinesterase (mf-AChE) was purified by affinity chromatography 
from bovine erythrocytes as described by Brodbeck et al. [15]. Apo 
A-I, A-II, and A-IV from bovine serum were isolated and purified 

essentially as described by Brewer et al. [16], HDL were obtained by 
sodium phosphotungstate precipitation as described by Mills et al. 

v71. 

2.2. Assays 

Correspondence address. U. Brodbeck, Institut fur Biochemie und 
Molekularbiologie, Universitat Bern, Biihlstrasse 28, CH-3012 Bern, 
Germany. Fax: (49) (41) 3165 3737. 

GPI-PLD activity was assayed using purified mf-AChE from bo- 
vine erythrocytes as substrate. Erythrocyte AChE is membrane-bound 
through covalently linked PI-glycan, and its conversion from the am- 
phiphihc mf-AChE to the soluble enzyme (s-AChE) serves as measure 
for anchor-degrading activity [18]. Samples containing GPI-PLD were 
placed into a 1 ml tube and adjusted to 21 ~1 with 20 mM Tris-HCl. 
pH 7.4. To this 4 ~1 of substrate solution containing 0.60 pmol (0.24 
IU) mf-AChE in 10 mM Tris-HCl, pH 7.4, 144 mM NaCI, 6 mM 
CaCl, and 0.1% Triton X-100. was added and incubated at 37°C for 
varying lengths of time. The product of the reaction. i.e. s-AChE, was 
separated from the substrate by phase separation in Triton X-l I4 [19] 
as described by Hoener and Brodbeck [6]. GPI-PLD activity was 
expressed as U/ml where 1 U equals 1 nmol of mf-AChE converted 
per mm at 37°C. 

Abbreviatrons. GPI, glycosyl-phosphatidylinositol; PLD. phospholip- 
ase D. HDL, high-density lipoprotein; apo, apohpoprotein; AChE, 
acetylcholinesterase; mf-AChE, membrane-form of AChE; s-AChE. 
soluble AChE; CMC, critical micellar concentration. 

2.3. Density gradzent centrrfugation 
Purified GPI-PLD (100 ~1) was dialyzed against 20 mM Tris-HCI, 

pH 7.4, and layered on top of 11 .O ml linear sucrose density gradients 
(5-30%) m the absence and presence of 0.1% Trtton X- 100. The gradi- 
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ents were centrifuged at 4’C and 195,000 x g,, for 15 h in a Centri- 
konQ070 centrtfuge equipped utth TST 4114 rotor. The gradients 
were emptied from the bottom with a glass capillary by means of a 
peristalttc pump Fractions of about 0.3 ml were collected m microtiter 
plates and assayed for GPI-PLD activity under standard assay condi- 
tions 

3. RESULTS 

In serum. GPI-PLD occurs in association with the 
HDL fraction [6]. In order to characterize this associa- 
tion further, we studied the interaction of GPI-PLD 
with purified bovine apo A-I, the major protein constit- 
uent of the HDL fraction. For this purpose, GPI-PLD 
was purified from bovine serum by separation in Triton 
X- 114 followed by column chromatography on DEAE- 
cellulose, octyl-Sepharose, concanavalin-A-Sepharose 
and hydroxyapatite, resulting in a more than 90% pure 
enzyme as estimated by SDS-PAGE [6]. Then, we com- 
pared the sedimentation behaviour of the purified and 
aggregated GPI-PLD in the absence and presence of 
increasing amounts of bovine apo A-I to that of GPI- 
PLD associated with HDL particles. As seen from Fig. 
lA, the majority of HDL-associated GPI-PLD sedi- 
mented at 7.6 S in the absence of detergent, while in the 
presence of 0.1% Triton X-100, it sedimented at 6.0 S. 
Pure GPI-PLD sedimented in the absence of apo A-I as 
a broad peak with a maximum at around 14.5 S (Fig. 
1B). Increasing amounts of apo A-I in the gradient 
shifted the sedimentation pattern to lower S values. 
(Fig. IB and C). In the presence of a IO-fold molar 
excess of apo A-I, a bimodal distribution of GPI-PLD 
activity was obtained with peaks at around 13.3 S and 
10.8 S. In the presence of a 40-fold molar excess of apo 
A-I, a further shift to lower S values resulted with a 
major peak at around 8.9 S (Fig. IB). At a 125-fold 
molar excess of apo A-I, the main activity sedimented 
at 7.3 S (Fig. 1C). At this moIar excess, the sedimenta- 
tion profile of GPI-PLD was similar to that of HDL- 
associated GPI-PLD. However, it clearly differed from 
that obtained in the presence of 0.1% Triton X-100 
(compare Fig. 1A and C). As seen from Fig. lD, the 
presence of bovine serum albumin in up to 40-times 
molar excess had virtually no effect on the sedimenta- 
tion behaviour of GPI-PLD, whereas at a 125-fold 
molar excess of bovine serum albumin, a partial shift 
towards lower sedimentation coefficients was also ob- 
served. 

In order to study a possible effect of apo A-I on 
GPI-PLD activity, purified enzyme was incubated with 
increasing amounts of apo A-I at different concentra- 
tions of Triton X-100 in the assay. As seen from Fig. 
2A, increasing amounts of apo A-I stimulated GPI- 
PLD activity up to 5-fold. Maximal activity was meas- 
ured at Triton X-100 concentrations of 0.016 to 0.018% 
which correspond to the CMC of Triton X-100 [20]. 
Below and above the CMC. lower activities resulted. 
From the saturation curve obtained at 0.018% Triton 
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Fig. 1. Sedtmentatton analysis of bovme HDL assoctated GPI-PLD 
and of purtfted GPI-PLD in the absence and presence of apo A-I or 
bovine serum albumin. (A) Sedimentation profiles of HDL-associated 
GPI-PLD in the absence (a) or presence of 0. I % Trtton X-100 (0). (B) 
Sedimentation profiles of GPI-PLD m the absence of apo A-I (o), and 
m the presence of a lo- (0) and 40-fold (A) molar excess of apo A-I 
as compared to the concentration of GPI-PLD. (C) GPI-PLD m the 
presence of a 125-fold molar excess of apo A-I over GPI-PLD in the 
absence (11) and presence of 0 1% Triton X-100 (0) m the gradient. (D) 
GPI-PLD m the presence of a IO- (0). 40- (A), and l&fold (n) molar 
excess of bovine serum albumin as compared to the concentration of 

GPI-PLD. The arrow indicates the posttton of catalase at 11.4 S 

X-100, the apparent half saturation was estimated at an 
apo A-I to GPI-PLD molar ratio of 15. As seen from 
Fig. 2B. GPI-PLD activity was also stimulated with 
increasing amounts of Triton X-100 up to detergent 
concentrations corresponding to the CMC of Triton 
X-100. At Triton X-100 concentrations above the 
CMC. GPI-PLD was inhibited. In control assays, it was 
verified that the apo A-I preparation contained no 
measurable GPI-PLD activity. 

4. DISCUSSION 

Our present results demonstrate that the previously 
observed association of GPI-PLD with HDL [6] may be 
mediated by binding of the enzyme to apo A-I. High 
molecular mass aggregates of pure GPI-PLD could be 
dispersed either by the addition of detergent or with apo 
A-I. As shown by density gradient centrifugation, apo 
A-I forms a complex with GPI-PLD which sedimented 
with a sedimentation coefficient clearly different from 
GPI-PLD in the presence of detergent. Moreover, GPI- 
PLD was retained by immobilized apo A-I on Sepha- 
rose-4B from where it could be eluted by Triton X-100 
(unpublished observation). Disaggregation of GPI- 
PLD aggregates could also be achieved by purified apo 
A-II and A-IV (unpublished result). In contrast, only a 
slight effect was observed with bovine serum albumin. 

Our studies further showed that aggregated GPI- 
PLD displayed practically no activity, which, however, 
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Fig. 2. (A) Stimulation of GPI-PLD activity by apo A-I. GPI-PLD 
activity was measured at the CMC (0.018%) of Triton X-100 (A), 
above (0.022%, 0) and below (0.01 l%, l ) the CMC of the detergent 
in the assay. The assay contained 0.6 pmol substrate (mf-AChE), 0.01 
pmol GPI-PLD, and increasing amounts of apo A-I. On the I-axis, 
the molar ratio of apo A-I to GPI-PLD is plotted. (B) GPI-PLD 
activity as a function of the Triton X-100 concentration in the assay 
in the presence of different amounts of apo A-I. The substrate (0.6 
pmol mf-AChE) was diluted into assay solution to yield the Indicated 
Trtton X-100 concentrations. GPI-PLD activity was measured m the 
absence (e) and m the presence of a lo- (o), 20- (w). 40- (m). 75 (A), 

and 125-fold (a) molar excess of apo A-I over GPI-PLD. 

could be restored upon addition of detergent and/or apo 
A-I. This suggests that apo A-I not only disaggregated 
GPI-PLD but also stimulated GPI-PLD activity. From 
the results presented in Fig. 2, it is evident that, regard- 
less of the detergent concentration in the assay, apo A-I 
stimulated GPI-PLD activity up to 5-fold. Again, apo 
A-II and A-IV showed a similar effect as apo A-I, 
whereas bovine serum albumin only slightly stimulated 
the GPI-PLD (unpublished results). The assay of GPI- 
PLD is complicated by the fact that in the absence of 
detergents, the amphiphilic substrate mf-AChE itself 
aggregates by self micellarization [21], and in this phys- 
ical state, the anchor is not hydrolyzed by GPI-PLD 
(unpublished result). It is reasonable to assume that in 
the protein micelle, the hydrophobic anchor of the sub- 
strate is in the interior and, thus, inaccessible to GPI- 
PLD. In the presence of detergent, the substrate micelle 
is dispersed, and in this physical state, GPI-PLD is able 
to bind substrate and to convert it to products. In the 
assay of GPI-PLD, Triton X-100 as well as a number 
of other detergents have a dual effect. They are needed 
at micellar amounts to disaggregate both enzyme and 

substrate, but as shown previously [6], they strongly 
inhibit GPI-PLD activity at detergent concentrations 
above the CMC. As shown now, the inhibition by Tri- 
ton X-100 is largely reduced by apo A-I. 

The stimulation of GPI-PLD by apo A-I parallels 
observations on a number of enzymes acting on lipid 
substrates. A well documented example is lecithin- 
cholesterol acyltransferase which is also stimulated by 
apo A-I [22]. Apo A-II [23], as well as apo E [24,25] 
increased the activity of hepatic lipase, while lipoprotein 
lipase is activated by apo CII [26,27]. Plasma apolipo- 
proteins are known to consist of amphipathic alpha- 
helices [28]. This, together with the observation that full 
activation of GPI-PLD took place when apo A-I was 
present in large excess over GPI-PLD, suggests that apo 
A-I exerts a detergent-like action on GPI-PLD. This 
explains the dissociation of pure, aggregated GPI-PLD 
by apo A-I and the observed non-stochiometric com- 
plex formation between the two proteins. Additionally, 
apo A-I may serve as protein cofactor to optimally 
present the substrate to the enzyme. This is indeed the 
case with lecithin-cholesterol acyltransferase, where 
apo A-I was shown to serve as a substrate binding 
cofactor [22]. 
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