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The rate of bait region cleavage of human c~-2-macroglobulin by chymotrypsin was determined by a rapid quenching method under conditions 
where the bimolecular encounter between the two reactants was not rate-limiting. ~2M was first mixed with a 30 molar excess of chymotrypsin 
in a sequential stopped-flow apparatus and after programmed time intervals the activity of chymotrypsin was quenched with 1 N HCI. The fraction 
of uncleaved subunits was quantitated by SDS-PAGE under reducing conditions. The result indicated that the bait region cleavage proceeded 

following a two-exponential decay curve with respective rate constants of k~ = 40 s -l and k 2 = 2 s ~. 
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1. INTR ODUC TION 

c~-2 -Macrog lobu l in  (c~2M) is a tetrameric serum 
glycoprotein that can inhibit a large variety of pro- 
teinases not directly by blocking their active sites but by 
trapping them in its presumed molecular cavity and 
isolating them from the high molecular weight sub- 
strates [1]. Such a mechanism for c~2M was first pro- 
posed by Barrett and Starkey as the 'trap hypothesis' 
and has since been elaborated by many others in detail 
[2-4]. According to the accepted idea of the trap mech- 
anism of today, a stretch of  about 30 amino acid resi- 
dues around 670 to 700 within a total of 1,451 is highly 
susceptible to proteolytic cleavage. Once a peptide bond 
in this so-called 'bait region' is hydrolyzed by encoun- 
tering proteinases, the native conformation of  ~2M col- 
lapses around the proteinase and traps it as if the entire 
structure of ~2 M is designed as a molecular scale mouse 
trap. Such a mechanism is well suited for catching a 
large variety of proteinases and inhibiting their activi- 
ties regardless of their active site chemistry. We also 
know that somewhere in the above reaction sequence, 
events like spontaneous thiolester cleavage and the ex- 
posure of the receptor binding sites take place [2]. 

The working principle of ~2M thus seems to be one 
of the triggered release of preset mechanical contrap- 
tions and is unique among proteins. From the body of 
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accumulated knowledge on the trap mechanism, we 
know that (1) one molecule of tetrameric human c~2M 
can trap up to two molecules of small proteinases such 
as chymotrypsin or trypsin, (2) when two mol of chy- 
motrypsin are trapped per mol of c~2M under molar 
abundance of the former, all four bait regions of tetra- 
meric ~2M are cleaved. The structural changes of CZzM 

and its homologues that takes place after bait region 
cleavage can be detected by a variety of physical and 
biochemical methods including electron microscopy 
[5,6], X-ray solution scattering [7], circular dichroism 
[8], electrophoresis [9], gel chromatography [10], fluo- 
rescence spectroscopy and sedimentation velocity [11]. 
We have little information, however, on the kinetic as- 
pects of  the reaction such as (1) how fast the bait regions 
are cleaved after the encounter of ~2 M with proteinases, 
(2) how many bait regions must be cleaved before the 
proteinases are trapped, (3) how closely connected in 
time are the bait region cleavage and the structural 
change? This work aims to clarify some of these ques- 
tions by directly determining the kinetic parameters of 
the bait region cleavage. 

2. MATERIALS AND METHODS 

2.1. etzM 
c~M was purified from the plasma of healthy Japanese males as 

described previously [12]. The purity of the sample was checked by gel 
electrophoresis. 

2.2. Rapid quenching method 
A DX17MV sequential stopped-flow apparatus (Applied Photo- 

physics Limited, UK) was used to perform a rapid quenching experi- 
ment. The initial mixing of~2M with chymotrypsin (Sigma, St. Louis, 
MO) was carried out in the first mixer within 1 ms. The concentration 
of ~2 M was usually 5.8 x 10  -6 M (4.2 mg/ml) and that of the enzyme 
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1.7 x 1 0  - 4  M. The effective bimolecular encounter of  the two reactants 
was completed within the initial mixing time, since the bimolecular 
rate constant  between ~2 M and chymotrypsin has been reported to be 
1.2 × 10 v s ~ [13]. The reaction mixture was kept in the Teflon tubing 
of  the apparatus for specified time intervals before the activity of  
chymotrypsin was destroyed with 1 N HC1 in the second mixer. It was 
confirmed on the same apparatus  that mixing with 1 N HCI could 
completely quench the activity of  chymotrypsin within 10 ms or less. 
Experiments were done at 25°C and 5°C. 

2.3. ElectrophoresLs' 

The quenched reaction mixture was recovered from the stop syringe 
of the stopped-flow apparatus  and neutralized with 1.5 M Tris-HC1 
buffer prior to 10% SDS-PAGE. Gels were stained with Coomassie 
brilliant blue R-250 for proteins after electrophoresis. The intensity of  
each band was measured with a CS 9000 dual wave length flying-spot 
scanner (Shimadzu, Kyoto,  Japan) and normalized as percentage of 
the total intensity for %M-derived peptides in each lane. The linear 
dependence of  staining intensity on the amount  of  applied protein was 
established prior to the experiment. 

3. RESULTS 

Fig. 1 is a typical example of  SDS-PAGE of the 
quenched reaction mixture after specified time intervals 
from the initial mixing of  % M  with chymotrypsin. The 
reaction was carried out at 25°C. The 180 kDa  band 
represents those after bait region cleavage. It is appar- 
ent that there is a steady decrease in the intensity of  180 
kDa  band. In a separate experiment with a manual  
operation we confirmed that all the bait regions were 
completely cleaved one minute after the initial mixing. 
The fractional band intensity of  the 180 kDa band des- 
ignated as S(180kDa) was plotted vs. time (s) in Fig. 2. 
The decrease of  180 kDa band showed a clear biphasic 
change. The reaction curve was fitted to a function hav- 
ing two exponential terms and the best fitting curve was, 

S(180kDa) = 0.55 exp(-39 t) + 0.45 exp(-2.1 t) 

Fig. 3 shows a similar kinetic result obtained at 5°C and 
the best fitting curve in this case was, 

S(180kDa) = 0.5 exp(-29 t) + 0.5 exp(-0.42 t) 

1 2 3 4 5 6 7 8 9  

180 kDa 

90 kDa 

Fig. 1. A typical example of  SDS-PAGE of  the quenched reaction 
mixtures at 25°C. Lanes 1, %M; 2, 19.1 ms after mixing with chymot-  
rypsin; 3, 21.6 ms; 4, 30.0 ms; 5, 43.0 ms; 6, 59.3 ms; 7, 102.3 ms; 8, 
188.2 ms; 9, 78.2 ms. Similar experiments were repeated at least five 

times at each temperature. 
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Fig. 2. Time course of bait region cleavage by chymotrypsin at 25°C. 
S(180kDa) on the ordinate represents the fraction of residual subunits  

with uncleaved bait region. (D) experimental; (----) best fit curve. 

From the results given above, we concluded that at 
both temperatures about  50% of the bait region was 
cleaved in the faster phase and the rest in the slower 
phase. 

4. DISCUSSION 

It was most surprising that the result from direct 
observation of the bait region cleavage revealed that the 
reaction took place in two well separated time ranges. 
Both at 25°C and 5°C, approximately 50% of the bait 
region was cleaved in the faster and the rest in the 
slower reaction. Since under the experimental condi- 
tions of  the present study the initial bimolecular en- 
counter should be completed within the mixing time, all 
the rate constants must be assigned to the processes 
taking place after the formation of  initial encounter 
complexes. From this point of  view the following major  
possibilities can be considered. 
(1) There are two populations of  %M, one with a faster 
and the other with a slower rate constant for bait region 
cleavage. 
(2) The first chymotrypsin to make an effective encoun- 
ter with % M  cleaves two bait regions with a faster and 
the second one with a slower rate constant. 
(3) Two chymotrypsin molecules attack ~ M  almost si- 
multaneously and both cleave the first bait regions with 
a faster and the second bait regions with a slower rate 
constant. 

Although at present there is no definite reason to give 
preference to one hypothesis over another, the first pos- 
sibility given above may safely be discarded on the basis 
of  the established homogeneity of  human %M at the 
amino acid sequence level. Experiments to distinguish 
the second and the third alternatives are in progress in 
our laboratory. 

It is noteworthy that the faster rate constant of  bait 
region cleavage is about  the same order of  magnitude 
as the fastest of  the three rate constants obtained by 
Larsson et al. f rom fluorescence stopped-flow kinetics 
[14], and the slower is in the same order of  magnitude 
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the extent of reaction using SDS-PAGE,  the present 
work is the first to show that  the bai t  region cleavage 
proceeds at widely different time ranges. 
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Fig. 3. Time course of bait region cleavage by chymotrypsin at 5°C. 
Symbols are the same as in Fig. 2. 

as the rate cons tant  for the s tructural  change deter- 
mined in our  labora tory  using X-ray small-angle scat- 
tering (to be published). In tegra t ion  of the present  data  
in a unified model  of t rap mechanism will be published 
elsewhere. 

Finally, we must  address the relat ion between acid 
quenching of the peptide bond  hydrolysis and the re- 
sults of SDS-PAGE.  If  the a m o u n t  of proteinase is 
much lower than  that  of  the substrate,  the result of  
SDS-PAGE accurately represents the a m o u n t  of resid- 
ual substrate because almost  all the substrates are either 
pre- or post-react ion and  only a small fraction is in the 
process of hydrolysis. Unde r  our  experimental  condi-  
t ions of 30 molar  excess of enzyme, however, a signifi- 
cant  fraction of  the bai t  region could be caught in the 
process of enzymatic  hydrolysis when acid quenching  
took place. In such cases we consider it most  reasonable 
to assume that  those peptide bonds  that  are at least in 
the acylat ion step or further are counted  as cleaved [15]. 

Despite such experimental  ambiguit ies and  signifi- 
cant  experimental  errors expected in our  quan t i t a t ion  of 
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