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Pharmacological agents which possess a chemosensitizing activity (i.e. the ability to modulate the multidrug resistance phenotype) can equally 
enhance ligand-toxin conjugate cytotoxicity. By confronting results obtained in both fields of research it appears that quite a number of agents, 
which are structurally unrelated, possess this bilateral effect. We have therefore attempted to provide a brief review of the literature and to discuss 
a hypothesis by which a common mechanism such as modifications in intracellular vesicle sorting and/or lipid metabolism may be implicated. We 

believe that these observations may provide clues for future research. 
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1. INTRODUCTION 

Metastatic cancers and malignant blood diseases are 
most often unresponsive to classical anticancer therapy, 
and several strategies aimed at developing new treat- 
ments are being pursued. Among these, two apparently 
distinct fields of research may be arriving at a cross- 
road. 

The first strategy involves the utilization of pharma- 
cological agents which are capable of increasing (as 
specifically as possible) the cytotoxicity of anti-cancer 
drugs (e.g. modulation of multidrug resistance (MDR) 
by chemosensitizers). The second strategy entails the 
development of anticancer agents with greater toxicity 
and specificity (i.e. ligand-toxin conjugates (LTC) such 
as immunotoxins (ITS)). Although, favorably modulat- 
ing the sensitivity of neoplastic cells to such divers cyto- 
toxic effecters is an attractive concept, one must recog- 
nize that, for the most part, the development of cytotox- 
icity-enhancers (‘sensitizers’) in both of these fields of 
research, has been based either on empirical screenings 
or serendipitous observations. This has mainly been due 
to the fact that we know little about the precise mecha- 
nisms of actions of these effecters, not to mention the 
eventual mechanisms of resistance. The situation would 
be even more extraordinary if a single sensitizer was 
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capable of enhancing the cytotoxicity of both types of 
effecters, i.e. anticancer drug and LTC. Such a situa- 
tion, implying that a single event induced by the sensi- 
tizer would have an impact on both types of effecters, 
could be of considerable interest for a better under- 
standing of mechanisms of resistance in targeted neo- 
plastic cells; and as a matter of fact, such a situation 
does exists in the uncanny observation that MDR mod- 
ulators also enhance LTC activity. 

2. BACKGROUND 

2.1. Modulation of multidrug resistance 
The most widely studied form of drug resistance is the 

MDR phenotype which is defined as broad cross-resis- 
tance to cytotoxic drugs with no apparent structural 
and functional similarities [l]. Many of the drugs af- 
fected by this phenotype, such as taxol, vinca alkaloids 
(vinblastine, vincristine), anthracyclines (doxorubicin, 
daunorubicin), epipodophyllotoxins (etoposide, ten- 
iposide), actinomycin D, and mitoxantrone are im- 
portant in current treatment protocols. The altered 
pharmacology of drugs in MDR cells (decreased accu- 
mulation and retention) appears to be mediated by a 
high molecular weight integral membrane protein, 
called P- glycoprotein (P-gp), that is overexpressed in 
MDR cells [2]. P-gp, which exhibits sequence similari- 
ties to certain bacterial transport proteins [3-51 and has 
ATPase activity [6] acts as a relatively unspecific energy- 
dependent efflux pump. Studies suggesting that the 
overexpression of the MDRI gene correlates with clini- 
cal resistance, support the hypothesis that the MDR 
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phenotype is involved in some aspects of resistance of 
cancers to chemotherapy [7-91. 

Although the evidence certainly proves that P-gp can 
confer MDR to cancer cells [lo], additional mechanisms 
contributing to MDR, such as modifications in intracel- 
lular drug distribution [l l-171 have also largely been 
reported. Beck initially suggested that P-gp may some- 
how also be responsible for drug sequestration in acidic 
compartments [18], but although intracellular pH has 
been implicated in drug sequestration [16,17], Pastan’s 
group has argued that the apparent increase in accumu- 
lation of drugs observed in the lysosomes and Golgi 
elements of MDR cells reflect more than the concentra- 
tive effect of the pH gradient in these organelles [12]. 
And in fact, the data presented by Hindenburg et al. 
implies the involvement of an energy dependent process 
[13]. Furthermore, Sehested et al. found increased traf- 
ficking of surface membrane material in MDR cells and 
proposed that this may be associated with increased 
drug extrusion [19]. This was consistent with the data 
of Warren et al. who suggested that the presence of P-gp 
may, in some manner, lead to the observed increased 
exocytosis of lysosomal enzymes [20]. 

The MDR phenotype can be overcome to various 
extents by treatment of cells with ‘chemosensitizers’ 
which increase intracellular drug accumulation specifi- 
cally in MDR cells. These include calcium antagonists, 
calmodulin antagonists, lysosomotropic amines, cy- 
closporines. and other hpophilic agents [21]. Although, 
the mechanisms by which chemosensitizers modulate 
MDR is poorly understood, most appear to be either 
substrates for P-gp and/or inhibitors of P-gp activity 
[22-251. However, modifications in intracellular drug 
distribution have also been reported. Both Hindenburg 
et al. and Schuurhuis et al. have shown that verapamil 
could modify the distribution of anthracyclines in drug 
resistant cells to that of the drug-sensitive cell pheno- 
type [13,15], and recently our group showed that the 
chemosensitizer SR33557 induced a redistribution of 
doxorubicin in intracellular compartments of MDR 
cells [26]. Finally, it is also possible that some chemo- 
sensitizers may interfer with P-gp function by disrupting 
key regulatory sites, e.g. phosphorylation sites [27,28]. 

2.2. Modulation of ligand-toxin conjugate cytotoxicitJ 
LTCs are conjugates of plant or bacterial toxins and 

a targeting vector usually composed of a monoclonal 
antibody but other vectors have been used, especially by 
Pastan’s group, such as interleukines [29-3 11, epidermal 
growth factor [32]. transforming growth factor [33], and 
insulin-like growth factor 1 [34]. Such ligand-toxin hy- 
brids are being increasingly investigated as a means of 
targeting and killing tumor cells. The toxins employed 
in LTC construction are among the most active protein 
inhibitors in cell extracts [35]. These include ricin, poke- 
weed antiviral protein, gelonin, diphtheria toxin, and 
Pseudomonas exotoxin [36,37]. The general procedure 
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for the construction of LTC relies on heterobifunctional 
reagents, such as N-succinimidyl 3-(2-pyridyl-dithi- 
opropionate) which permit crosslinking between ligand 
and toxin [38]. However, the elimination of the cell 
binding component of the toxin (to prevent cross-reac- 
tion with non-targeted cells), which also plays a role in 
facilitating the translocation of the toxin from the en- 
dosome to the cytosol, greatly decreases the in vitro 
activity of LTCs [37.39]. Therefore, although these con- 
jugates show stringent specific cytotoxicity. their clini- 
cal potential depends not only on their construction 
[4042] but equally on ways of increasing their cytotoxic 
activity. 

Among several strategies engaged in an effort to en- 
hance LTC cytotoxicity, such as the development of 
more potent conjugates (e.g. using monoclonal anti- 
body fragments [41] or chimeric fusion proteins [29- 
34]), potentiation of LTC cytotoxicity has been 
achieved in some cases with the use of sensitizers such 
as carboxylic ionophores [43,44], lysosomotropic 
amines [4346], and calcium antagonists [47-521. Here 
again, the mechanisms by which these agents enhance 
LTC cytotoxicity is poorly understood. 

In order to be cytotoxic, LTCs need to be internal- 
ized. They bind to their membrane surface receptor, are 
transferred into acidic compartments (endosomes) and 
from there are directed either towards the Golgi appara- 
tus or directly into the lysosome, where they are de- 
graded [38,53,54]. Obviously, depending on the toxin 
moiety, limiting the access to the lysosomal route, or 
modifying its function, would favor both the release of 
toxin molecules and their translocation into the cytosol. 

LTC enhancers have, in fact, been described as inter- 
fering with the intracellular routing of the ligand, most 
notably by interacting with the lysosome. The carbox- 
ylic ionophore monensin, for example, was first de- 
scribed by Jansen’s group as producing a dramatic 
decrease in ricin A-chain-IT (RTA-IT) lysosomal se- 
questration and therefore increasing their number in 
pre- lysosomal compartments [53]. However, monensin 
blocks the toxicity of diphteria toxin-ITS by increasing 
pH and thereby preventing translocation [55]. Likewise, 
Pastan’s group showed that verapamil inhibited the 
degradation of epidermal growth factor-Pseudomonas 
exotoxin (EGF-PE) conjugates most likely by interact- 
ing with lysosomes [56]. Finally, similar findings with 
RTA-ITS were reported by our laboratory for perhexil- 
ine and SR33557 [50-521. 

3. BILATERAL EFFECT OF CERTAIN PHARMA- 
COLOGICAL AGENTS: IMPLICATION OF 
THE LIPID METABOLISM 

3.1. Modulation of both multidrug resistance and ligand- 
toxin cytotoxicity 

When one confronts the results obtained in both of 
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the fields of research described above, a striking obser- 
vation is made: certain pharmacological agents possess 
both a chemosensitizing activity and an LTC enhance- 
ment activity. For example verapamil, which was the 
first agent reported to restore sensitivity to MDR cells 
by Tsuruo’s laboratory [57], was later shown to be an 
enhancer of RTA-IT and Pseudomonas exotoxin-IT 
cytotoxicity by Pastan’s group [4749]. In both of these 
cases the active concentrations of verapamil were within 
the micromolar range. Another calcium antagonist, per- 
hexiline, which is structurally distinct from verapamil, 
was reported to be a chemosensitizer by Ramu et al. 
[58]. Our group found that perhexiline, at the same 
MDR modulating concentrations, was also a strong 
enhancer of RTA-IT cytotoxicity [50]. Furthermore, a 
structurally novel calcium antagonist, SR33557, was re- 
cently described by us to be both a highly potent MDR 
modulator [25] and enhancer of RTA-IT cytotoxicity at 
micromolar concentrations [52]. And, finally, both cy- 
closporine A and its non-immunosuppresive analogue 
SDZ PSC 833 are not only potent chemosensitizers with 
clinical potential [59-611, but are also potent RTA-IT 
enhancers (Jaffrtzou, J.P., Sikic, B. and Laurent, G., 

Cyclosporine A and cyclosporine SDZ PSC 833 en- 
hance anti-CD5 ricin A-chain immunotoxins in human 
leukemic T cells, submitted for publication). Such ob- 
servations (see Table I) are numerous, and evidently, 
this crisscrossing of reports deserves a closer look. Since 
the most common denominator which is potentially in- 
volved in both MDR and LTC cytotoxicity is the intra- 
cellular trafficking of the cytotoxic agents, we would 
like to propose the following working hypothesis: 
agents which possess both a chemosensitizing activity 
and a LTC enhancing activity act by a discrete mecha- 
nism leading to perturbations in lipid metabolism with 
repercussions on P-gp activity, endocytosis and intracel- 
lular vesicle sorting. 

3.2. Implication of the lipid metabolism 
Many of the agents listed in Table I which are lysoso- 

motropic, have previously been described as interfering 
with lysosomal function. Lysosomes contain over 40 
hydrolytic enzymes and are important sites for intracel- 
lular digestion. Intracellular membrane supply of lipids, 
such as cholesterol and sphingomyelin, which arrive 
through the process of autophagy are normally de- 

Table I 

Reversal of multidrug resistance (MDR) and enhancement of ligand-toxin conjugate (LTC) cytotoxicity: bilateral effect of certain pharmacological 
agents 

Drug MDR reversal 
[ref.] 

Drug cont. LTC enhancement 
[ref.] 

Drug cow. 

Calcium antagonists 

Verapamil 
Prenylamine 
Bepridil 
Nifedipme 
Diltiazem 
SDB” 
Perhexiline 
SR33557 

Calmodulin antagonists 

Trilluoperazine 
Thioridazine 
Chlorpromazine 

Carboxilic ionophores 

Monensin 
Nigericin 

Lysosomotropic amines 
Chloroquine 
Amantadine 

Other 

Cepharantine 
Cyclosporine A 
SDZ PSC 833 

[23,57,62-671 

166-681 
[691 

[23,64,68] 
[62-641 

[701 
P8,721 

[251 

[23,62,66,68,73,74] 
t73.761 

[65,73,74] 

[77,781 
[771 

[65,801 
[811 

I821 
[591 
I601 

l-20 PM 
6.610 PM 

4pM 
l-100 FM 
l-100 PM 

1768 .&ml 
l-10 PM 
3-30 PM 

l-10 ,uM 
3-9 PM 

4-10 ELM 

lo-25 yM 
67 ,uM 

3-100 PM 
40-66 PM 

l-2 pg/ml 
24 HIM 
14 PM 

[47,52] 
[511 
1511 
[461 

[47,511 
[711 

[50.51] 
[51,52] 

148,751 
[751 

[48,75] 

[43,46,50,51,79] 
I431 

143,461 
WI 

[831 
b 
b 

5-200 ,uM 
4fiM 

4-10 PM 
6pM 

25-50 pM 
17-34 &ml 

l-10 PM 
5pM 

1-3 ,uM 
3-9 PM 

l-10 PM 

0.05JI.l ,uM 
0.01 j.iM 

4C-100 /iM 
1000 PM 

“Synthetic isoprenoid: N-solanesyl-N.N’-bis(3-4-dimethoxybenzyI)ethelenediamine. 
‘Jaffrezou J.P., Sikic B.I., and Laurent, G. (1993) Cyclosporine A and cyclosporine SDZ PSC 833 enhance anti-CDS ricin A-cham immunotoxins 

m human leukemic T-cells (submitted for publication). 
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Fig. 1. Scheme of how certain pharmacologtcal agents. can both modulate multidrug resistance (MDR) and enhance ligand-toxin conjugate (LTC) 
cytotoxrcity. (1) Cytotoxtc drugs (open diamonds) interact with membrane lipids and can be captured, before they reach there target, by P-gp either 
directly from the lipid btlayer (A) and/or from the cytoplasm after their diffusion (B). These drugs may also mteract with mtracellular membranes 
and acidic vesicles such as lysosomes (C). (2) LTCs (open triangles) are generally internalized through coated pits (D) and traffic towards lysosomes 
where they are degraded (E). A portion of the internalized LTCs escape thus fate and reach cytoplasmic targets. (3) Sensrtizers (closed circles) may 
modulate MDR either by dnectly inhibiting P-gp (F) and/or by displacing cytotoxic drugs from the lipid bilayers thereby preventing their expulsion 
by P-gp (G). Sensitizers may also interact with mtracellular vesicles (such as lysosomes, H), by either disrupting lipid metabolism and/or modifying 
pH. leading to the observed redistribution of cytotoxic drugs. Sensitizers may increase LTC cytotoxictty by re-routing LTC through membrane 
channels, by-passmg degradatron and releasing active toxin mto the cytoplasm, or by interferring with lysosomal or vesicular processing by changing 

the pH or lipid metabolism 

graded in lysosomes [84,85]. In this perspective, cationic 
amphiphilic drugs (CADS) have been described as con- 
centrating in the lysosomes and inhibiting the in- 
tralysosomal breakdown of lipids. This leads to the 
induction of lipidosis, which is characterised by an in- 
crease in cellular phospholipids and the appeararance 
of lamellated inclusion bodies (for review see [86]). The 
cationic amphipatic nature of most sensitizers suggests 
that a strong interaction can and will occur with certain 
polar lipids resulting in complexes formed by hydro- 
phobic and electrostatic forces [87]. The ability of these 
putative lysosomotropic agents to induce lysosomal 
storage of polar lipids (these agents seemed to be also 
accumulated in lysosomes together with lipids) and per- 
turbing membrane function has been described by Ltill- 
mann et al. [88,89]. The presence of such, morphological 
alterations by sensitizers were first described by Pas- 
tan’s group with the abnormal appearance of lysosomes 
in verapamil treated cells [56]. Since then, Akiyama’s 
group and our laboratory have shown that cells treated 
with thioridazine [90], cepharantine [83], SDB [71]. per- 
hexiline [50], and SR33557 [51,52] all show the presence 
of many autophagosomes and electron-dense lysosome- 
like bodies. 

Morphological alterations, such as those described 
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above, have been linked to the interaction of the sensi- 
tizers with certain lipids such as phosphatidylserine [91], 
and sphingomyelin [25,50-52,541 as well as certain lyso- 
somal enzymes such as acid sphingomyelinase [25,50- 
521, camthepsin D and acid phosphatase [92]. More- 
over, chlorpromazine and chloroquine have been shown 
to directly affect phospholipid synthesis [93-951. 
Chlorpromazine, for example is a potent inhibitor of 
phospholipase Al [94,96], and of protein kinase C [97]. 
Finally, although sensitizers such as cyclosporine A and 
monensin may not induce phospholipidosis, the former 
has been described as possibly binding to lipid domains 
and thereby provoking changes in both membrane po- 
tential and lipid order [98], and the latter has recently 
been shown to directly inhibit sphingomyelin synthesis 

]991. 

3.2.1. Enhancement of ligand-toxin cytotoxicity 
Several reports have shown that interference with ly- 

sosomal function in particular with lipid metabolism by 
lysosomotropic agents may not only lead to delayed 
digestion of cellular lipids, but also of cellular and endo- 
cytosed proteins. Monensin, for example, has been 
shown to disrupt membrane trafficking and block the 
function of the trans Golgi apparatus [91] and to delay 
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RTA-IT degradation [52]. Other studies have shown 
that chemosensitizers such as propanolol (a lysoso- 
motropic amine) [ 1001, trifluoperazine, chlorpromazine, 
and thioridazine (calmodulin antagonists) also inhibit 
lysosomal degradation of low density lipoproteins and/ 
or EGF-PE conjugates [75]. In the calcium antagonists 
family, which has been described as inhibiting the deg- 
radation of low-density lipoproteins [90], inhibition of 
intracellular EGF-PE conjugate degradation has been 
shown by Pastan’s group for verapamil [56] and its 
analog SDB [71], and by our group for RTA-ITS by 
perhexiline and SR33557 [50-521. 

LTC enhancement 
search (see Fig. 1). 
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