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Phytanic acid accumulates in excessive amounts in Refsum disease, a rare neurological disorder, due to a defect in its a-oxidation enzyme system 
in peroxisomes. The activation of phytanic acid to phytanoyl-CoA by phytanoyl-CoA ligase is a prerequisite for its a-oxidation, The studies 
described in this manuscript report that phytanoyl-CoA ligase in peroxisomes is an enzyme distinct from the previously reported acyl-CoA ligases. 
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1. INTRODUCTION 

Phytanic acid (3,7,11,15tetramethylhexadecanoic 
acid), a highly branched fatty acid, accumulates in ex- 
cessive amounts in Refsum disease [l] and in diseases 
which lack peroxisomes [2,3]. The defect in the a-oxida- 
tion of phytanic acid is at the level of the conversion of 
phytanic acid to a-hydroxyphytanic acid [1,4,5]. Be- 
cause of the presence of a methyl group at the /%carbon, 
phytanic acid does not undergo B-oxidation but is first 
a-oxidized to pristanic acid [4-61. The oxidation of [l- 
“C]phytanic acid to pristanic acid in subcellular frac- 
tions purified by Nycodenz gradient from rat (liver and 
cultured skin fibroblasts) and human (liver and cultured 
skin fibroblast) tissues demonstrated that phytanic acid 
is oxidized in peroxisomes in humans [7,8] and in mito- 
chondria in rodents [6,8]. The higher specific activity of 
phytanic acid oxidation in peroxisomes than that in 
other organelles [7,8], and the deficient a-oxidation of 
phytanic acid, in monolayers of cultured fibroblasts 
[5,9,10], cellular homogenates and in isolated per- 
oxisomes [l l] from cultured skin fibroblasts from pa- 
tients with Refsum disease, and in cultured skin fibrob- 
lasts from patients with diseases which lack per- 
oxisomes (e.g. Zellweger syndrome [9]), support the 
conclusion that a-oxidation of phytanic acid to pris- 
tanic acid in humans is a peroxisomal function. 

The activation of phytanic acid to phytanoyl-CoA is 
the initial and obligatory step in the oxidation of 
phytanic acid [7,8]. Fatty acids of different chain-length 

Correspondence address: I. Singh, Department of Pediatrics, Division 
of Developmental Neurogenetics, Medical University of South Caro- 
lina, 171 Ashley Avenue, Charleston, SC 29425, USA. Fax: (1) (803) 
792-2033. 

Published by Elsevier Science Publishers B. K 101 

are activated to acyl-CoA derivatives by different acyl- 
CoA ligases [12]. For example, long-chain fatty acids 
(C,,-C,J and very long-chain fatty acids (> C,,) are 
activated by palmitoyl-CoA ligase [ 131 and lignoceroyl- 
CoA ligase [ 14,151, respectively. At the subcellular level, 
palmitoyl-CoA ligase (76 kDa) is present in per- 
oxisomes, mitochondria and endoplasmic reticulum 
(ER) [ 131 in contrast to lignoceroyl-CoA ligase which is 
present in peroxisomes and ER [14-181. At present it is 
not known whether phytanoyl-CoA ligase activity in 
peroxisomes is derived from palmitoyl-CoA ligase or 
lignoceroyl-CoA ligase or exists as a distinct enzyme. 

We examined the subcellular distribution of phy- 
tanoyl-CoA ligase in human (liver and cultured skin 
fibroblasts) and rat (liver and cultured skin fibroblasts) 
tissues. We also studied the properties of phytanoyl- 
CoA ligase in peroxisomes from human skin fibrob- 
lasts. These studies demonstrate that phytanoyl-CoA 
ligase in peroxisomes is a distinct enzyme from palmi- 
toyl-CoA ligase and lignoceroyl-CoA ligase. 

2. MATERIALS AND METHODS 

Nycodenz was obtained from Accurate Chemical and Scientific 
Corp., Westbury, N.Y., ATP and CoASH were purchased from P-L 
Biochemicals, Milwaukee, WI. [I-“‘ClPhytanic acid (55 mCi/mmol) 
was purchased from Amersham International, Arlington Heights, IL, 
and [I-‘4C]palmitic acid was from New England Nuclear, Boston, 
MA. [I-‘4C]Lignoceric acid (58.7 mCi/mmol) was synthesized from 
tricosanoylibromide and K“‘CN as described previously [20]. 

Peroxisomes from rat (liver and cultured skin fibroblasts) and 
human (liver and cultured skin fibroblasts) were isolated according to 
the procedures described previously [19,20]. The gradient fractions 
were analyzed for marker enzymes for different subcellular organelles; 
catalase for peroxisomes, cytochrome c oxidase for mitochondria and 
NADPH cytochrome c reductase for ER. Acyl-CoA ligase activities 
for different fatty acids was measured as described previously [21]. 
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3. RESULTS AND DISCUSSION 

We have recently demonstrated that in human tissues 
phytanic acid is oxidized in peroxisomes and in rat tis- 
sues in mitochondria, and that the activation of 
phytanic acid to phytanoyl-CoA is the initial and oblig- 
atory step in its oxidation [7,8]. Fig. 1 shows the phy- 
tanoyl-CoA ligase activities in different subcellular or- 
ganelles isolated from human (liver and cultured skin 
fibroblasts) and rat (liver and cultured skin fibroblasts) 
tissues by isopycnic density gradient centrifugation. In 
human liver and cultured skin fibroblasts phytanoyl- 
CoA ligase had a trimodal distribution in peroxisomes, 
mitochondria and ER (Fig. 1). The specific activity of 
phytanoyl-CoA ligase in peroxisomes from human liver 
and fibroblasts was 12- and &times higher, respectively, 
than that in mitochondria (Table I). In rat tissues (liver 
and cultured rat skin fibroblasts) the phytanoyl-CoA 
ligase activity also had a trimodal distribution in ER, 
mitochondria and peroxisomes, however, the specific 
activity in mitochondria from rat liver and rat fibrob- 
lasts was 7- and 8-times higher than that observed in 
peroxisomes (Fig. 1 and Table I). The higher specific 
activity of phytanoyl-CoA ligase in peroxisomes from 
human tissues and mitochondria from rat tissues (Table 
I and Fig. 1) parallels the phytanic acid a-oxidation 
activities in these species [68]. These results suggest 
that the subcellular distribution of phytanoyl-CoA li- 
gases control the phytanic acid oxidation by their ability 
to provide the phytanoyl-CoA for a-oxidation in these 
organelles. The acyl-CoA ligases in ER are considered 
to be responsible for providing acyl-CoA derivatives for 
the biogenesis of complex lipid [ 12,131. The ER from rat 
tissues had 6- to 9-fold higher specific activity than ER 
from human tissues (Table I) suggesting that as com- 
pared to humans, the rat tissues should have higher 
amounts of phytanic acid containing lipids. Consistent 
with the function of acyl-CoA ligases in ER the rat 
tissues do in fact contain higher amounts of phytanic 
acid in triglycerides as compared to humans [l]. The 
phytanoyl-CoA ligase activity in mitochondria and ER 
was demonstrated previously [22]. This is the first dem- 
onstration of phytanoyl-CoA ligase activity in per- 
oxisomes. 

This differential distribution and different specific ac- 

tivity of phytanoyl-CoA ligase (Fig. 1 and Table I) com- 
pared to those of palmitoyl-CoA ligase and lignoceroyl- 
CoA ligase [ 14-201 in different subcellular organelles 
suggests that phytanoyl-CoA ligase is an enzyme dis- 
tinct from the previously described palmitoyl-CoA li- 
gase and 1ignoceroylCoA ligase. The pattern of specific 
activities of palmitoyl-CoA ligase and lignoceroyl-CoA 
ligase in peroxisomes, mitochondria and ER from cul- 
tured skin fibroblasts [18-201 and rat liver [17] are rela- 
tively similar. In contrast the specific activities of phy- 
tanoyl-CoA ligase in subcellular organelles from human 
tissues are different from those of rat tissues (Table I). 
The fact that the specific activity of phytanoyl-CoA 
ligase in peroxisomes from human cultured skin fibrob- 
lasts is 8-times higher than that in rat liver peroxisomes 
suggests that phytanoyl-CoA ligase activity in human 
peroxisomes is not derived from palmitoyl-CoA ligase 
or 1ignoceroylCoA ligase. 

The conclusion that phytanoyl-CoA ligase in humans 
is an enzyme distinct from palmitoyl-CoA and ligno- 
ceroyl-CoA ligases was further established by the com- 
parison of enzyme activities of acyl-CoA ligases for 
palmitic, lignoceric and phytanic acids when per- 
oxisomes isolated from cultured human skin fibroblasts 
were treated with protease (trypsin), detergent (Triton 
X-100) and antibodies to palmitoyl-CoA ligase (Fig. 2). 
The observations that antibodies against purified palmi- 
toyl-CoA ligase inhibit only the palmitoyl-CoA ligase 
activity, with no effect on the activities of phytanoyl- 
CoA and lignoceroyl-CoA ligases, suggests that phy- 
tanoyl-CoA ligase is a different protein from palmitoyl- 
CoA ligase (Fig. 2A). Moreover, the loss of activity of 
phytanoyl-CoA ligase, but not of palmitoyl-CoA ligase 
or lignoceroyl-CoA ligase, when peroxisomes were 
treated with detergent (Triton X-100) also support the 
conclusion that phytanoyl-CoA ligase is a different en- 
zyme from palmitoyl-CoA ligase (Fig. 2B). The activity 
of lignoceroyl-CoA ligase was 3-times higher in deter- 
gent-treated peroxisomes (Fig. 2B). These results are 
consistent with our previous observations that in per- 
oxisomes the active site of palmitoyl-CoA ligase is on 
the cytoplasmic surface and that of lignoceroyl-CoA 
ligase is on the luminal surface [23]. The disruption of 
the integrity of peroxisomes with Triton X-100 in- 
creased the activity of lignoceroyl-CoA ligase but not of 

Table I 

Specific activity of phytanoyl CoA ligase (nmol/h/mg protein) in different subcellular organelles isolated from different tissues 

PN fraction Peroxisome Mitochondria Microsome 

Human liver 1.46 f 0.36 15.22 f 1.26 1.29 t 0.18 2.27 k 0.11 
Human fibroblast 1.34 f 0.2 10.89 f 1.05 1.45 + 0.02 2.31 t 0.31 
Rat liver 6.56 It 1.08 1.40 f 0.18 9.63 + 1.23 20.38 + 2.43 
Rat fibroblast 4.76 f 0.72 1.02 f 0.14 8.05 f 0.96 13.41 + 3.2 

The phytanoyl-CoA ligase activity was measured as described previously [20]. The results are expressed as mean f S.D. from three different cell 
lines and livers from rat and humans. 
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Fig. 1. Subcellular localization in phytanoyl-CoA ligase in rat and human tissues. Liver (human and rat) and cultured skin fibroblasts (human and 
rat) were fractionated according to the procedures described previously [21]. The distribution of subcellular organelles in the gradient were identified 
by their marker enzymes; catalase for peroxisomes, cytochrome c oxidase for mitochondria and NADPH cytochrome c reductase for endoplasmic 
reticulum. These results are the average of two gradients of each. Panels A-D represent gradient profiles of human liver, human fibroblasts, rat 

liver and rat fibroblasts, respectively. 

palmitoyl-CoA ligase activity. The relative loss of phy- 
tanoyl-CoA ligase activity as compared to the increase 
in lignoceroyl-CoA ligase activity suggests that phy- 
tanoyl-CoA ligase activity in human skin fibroblasts is 
not derived from lignoceroyl-CoA ligase. Treatment of 
intact peroxisomes with trypsin inhibited the activities 
of both phytanoyl-CoA and palmitoyl-CoA ligases but 
had little effect on lignoceroyl-CoA ligase activity (Fig. 
2C). The inhibition of phytanoyl-CoA ligase by Triton 
X-100 (Fig. 2B) and trypsin (Fig. 2C), but not of ligno- 
ceroyl-CoA ligase activity, supports the conclusion that 
in peroxisomes phytanoyl-CoA ligase activity is derived 
from an enzyme distinct from lignoceroyl-CoA ligase. 
This conclusion is further supported by the previous 

observations that lignoceroyl-CoA ligase and oxidation 
of lignoceric acid is deficient in peroxisomes from pa- 
tients with X-linked adrenoleukodystrophy (X-ALD) 
[l&20]. However, the peroxisomes from X-ALD have 
normal activity for oxidation of phytanic acid [8,9]. 
Overall these studies clearly demonstrate that phy- 
tanoyl-CoA ligase in peroxisomes from human skin fi- 
broblasts is a distinctly different enzyme from palmi- 
toyl-CoA ligase and lignoceroyl-CoA ligase. However, 
at present it is not known whether phytanoyl-CoA li- 
gase activities in peroxisomes, mitochondria and micro- 
somes are derived from the same or different enzymes. 

It is now recognized that peroxisomes perform major 
metabolic functions (e.g. synthesis of plasmalogens and 
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Fig. 2. (A) Effect of antisera against palmitoyl-CoA ligase on acyl- 
CoA ligase activities in peroxisomes. The acyl-CoA ligase activities in 
isolated peroxisomes from cultured skin fibroblasts for phytanic, 
palmitic and lignoceric were measured as described previously [20,23]. 
The ratio of peroxisomes-to-antibodies against palmitoyl-CoA ligase 
was 1:3 and controls contained the same amount of preimmune sera. 
This mixture was stirred for 2 h at 4°C followed by addition of 11% 
protein-A-Sepharose to a final concentration of 1%. The resulting 
mixture was stirred for 30 min and then centrifuged at 3,000 rpm for 
15 min to remove sediment. Supematant was used for ligase assays. 
100% activities for phytanoyl-CoA, palmitoyl-CoA and lignoceroyl- 
CoA ligase were 9.05 f 0.95, 21.85 + 2.06 and 0.76 f 0.07 nmol/h/mg 
protein, respectively. (B) Effect of Triton X-100 on Acyl-CoA ligase 
activities in peroxisomes. The peroxisomes from cultured human skin 
fibroblasts were treated with 0.05% Triton X-100 in a buffer contain- 
ing 0.25 M sucrose, 1 mM EDTA-Na, and 3 mM imidazole, pH 7.4, 
for 30 min at 4°C prior to estimation of acyl-CoA ligase activities. 
100% activities for phytanoyl-CoA, palmitoyl-CoA and lignoceroyl- 
CoA ligases were 10.89 f 1.05, 23.84 f 2.83 and 0.84 + 0.07 nmol/h/ 
mg protein, respectively. (C) Effect of trypsin on Acyl-CoA ligase 
activities in peroxisomes. Intact peroxisomes were treated with trypsin 
(trypsin:peroxisome ratio, 1:20 by protein) for 20 min at 37°C. The 
trypsin activity was inhibited by the addition of soybean trypsin inhib- 
itor (trypsimsoybean trypsin inhibitor, 1:2 by protein). 100% activities 
for phytanoyl-CoA, palmitoyl-CoA and lignoceroyl-CoA ligases were 
10.89 f 1.05, 23.84 f 2.83 and 0.84 + 0.07 nmol/h/mg protein, 

respectively. 

bile acids and oxidation of very long-chain, branched- 
chain, and dicarboxylic fatty acids [2,3]. Moreover, in 
the past 10 years 15 diseases associated with the dys- 
function of peroxisomes have been identified [2,3]. This 
is the first demonstration of phytanoyl-CoA ligase ac- 
tivity in peroxisomes. The identification of the enzyme 
(phytanoyl-CoA ligase) for activation of phytanic acid 

and the possible regulation of the oxidation of phytanic 
acid by phytanoyl-CoA ligase underlines the impor- 
tance of phytanoyl-CoA ligase in the metabolism of 
phytanic acid in normal and disease states with abnor- 
mality in phytanic acid catabolism (e.g. Refsum disease, 
Rhizomelic chondrodysplasia punctata and diseases 
with defects in the assembly of peroxisomes). 
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