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Lys- 110 of human NADH-cytochrome b, reductase was replaced by Ala, Met, or Arg by site-directed mutagenesis to evaluate the role of the residue. 
K,,, values of purified Lys-110 -+ Ala and Lys-110 + Met mutants for NADH were approximately 200-fold and l,lOO-fold higher than that of the 
wild-type, respectively, while the value of the Arg mutant was almost the same as that of the wild-type. These results indicate that the positive charge 
at position 110 is important for NADH binding. The k,, value of Lys-110 -+ Ala was not affected, indicating that the residue only participates 

in the binding process in the reaction by forming an ionic interaction with phosphoryl group of NADH. 
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1. INTRODUCTION 

NADH-cytochrome bS reductase (&R; EC 1.6.2.2) is 
an FAD-containing oxidoreductase which transfers two 
electrons from NADH to two molecules of cytochrome 
b, [1,2]. The enzyme participates in methemoglobin re- 
duction in erythrocytes [3], while in other tissues it plays 
a role in elongation and desaturation of fatty acids [4,5]. 
P-450-mediated drug metabolism [6], and cholesterol 
biosynthesis [7] as a part of the microsomal electron 
transfer system. 

Porter et al. [8] first noted homology in the FAD and 
NAD(P)H binding sites of &R, ferredoxin-NADP’ re- 
ductase (FNR) and NADPH-cytochrome P-450 reduc- 
tase. It has now become evident that b,R is a member 
of a family that consists of FNR, sulfite reductase, 
NADPH-cytochrome P-450 reductase, nitrate reduc- 
tase, and nitric oxide synthetase, because important res- 
idues in FAD and NAD(P)H binding determined by the 
atomic structure of FNR at 2.6 A [9], are conserved in 
all of these enzymes. These enzymes do not have the 
GxGxx(G/A) sequence motif which is widely found in 
the canonical dinucleotide binding site. The enzymes in 
this novel family are, therefore, likely to share a new 
aspect in NADH binding. 

Recently Hackett et al. [lo] reported that specific ace- 
tylation of Lys-110 of the enzyme elevates K, values for 
NADH by 300-fold and causes a significant decrease in 
the activity. Because conclusions deduced from chemi- 
cal modification experiments in many cases cannot ex- 
clude the possibility of steric hindrance, we have exam- 
ined in the present study the role of the Lys residue of 
the enzyme on the basis of site-directed mutagenesis. 
During the preparation of this manuscript, Strittmatter 
et al. [l l] reported a site-directed mutagenesis study of 
Lys- 110 of steer b,R. They converted Lys- 110 to Gln or 
His and observed significant elevation of K,,, values in 
both mutants, and significant reduction of k,, values in 
the Lys-110 + Gln mutant. From these results they 
concluded that Lys- 110 might play roles both in binding 
of NADH and in further processing, e.g. orientation of 
the bound substrate. In contrast, our results from a 
KllOA mutant indicates that this residue participates 
only in the binding process, because k,,, values of the 
mutant were retained at almost the same level as that 
of the wild-type enzyme. 

2. MATERIALS AND METHODS 

2.1. Materials 

Correspondence address: K. Shirabe, Department of Biochemistry, 
Oita Medical University, Hasama-machi, Oita 879-55, Japan. Fax: 
(81) (975) 496 302. 

Abbreviations: b,R, NADH-cytochrome b5 reductase; FNR, ferre- 
doxin-NADP’ reductase; Kl lOA, the mutant enzyme with a Lys res- 
idue at position 110 (Lys-110) replaced by Ala; Kl lOM, the mutant 
with Lys-110 replaced by Met; Kl lOR, the mutant with Lys-110 re- 
placed by Arg. 

Construction of the expression plasmid for the wild-type enzyme 
and E. coli RB791 used for expression were described previously [12]. 
Restriction enzymes and T4 polynucleotide kinase were obtained from 
Takara Shuzo (Kyoto, Japan) and the in vitro mutagenesis system was 
the product of Amersham (UK). Sequenase used for dideoxy chain- 
termination [13] was purchased from US Biochemicals (Cleveland, 
OH, USA). Oligonucleotides for mutagenesis were synthesized with 
a DNA synthesizer (model 8600; Milligen Biosearch Inc., San Rafael, 
USA). DEAE-Toyopearl and Y-AMP-Sepharose 4B were the prod- 
ucts of Tosoh (Tokyo, Japan) and Pharmacia LKB Biotechnology 
(Uppsala, Sweden), respectively. Bovine a-thrombin was purchased 
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from Sigma (St. Louis, MO, USA). Other reagents were obtained 
commercially. 

2.2. Site-directed mutagenesis and construction of expression plasmid 
Mutagenesis was carried out by the method of Taylor et al. [14] as 

described previously [15]. Antisense primers used to isolate mutants 
were 5’-AAGTAAACCGCGATGACCAGG-3’ for Kl 10A and 5’- 
AAGTAAACC~ or ~GATGACCAGG~’ for KllOM and 
KllOR (the changed nucleotides are underlined). Construction of the 
expression plasmid was essentially the same as described [16]. Human 
erythrocyte cytochrome b,, which was used as an electron acceptor in 
the enzyme assay, was purified as described previously [16]. 

2.3. Purification of the wild-type and mutant enzymes 
The wild-type and mutant enzymes were purified to homogeneity 

as described [12] with some modifications, as described below, from 
E. co/i RB791 harboring the respective mutant plasmids. The activity 
of the KllOM and KllOA mutants was assayed as described [16] 
except that 1 mM NADH was used instead of 100 PM because of 
higher K,,, value for NADH of these mutant enzymes. Affinity chrom- 
atography with 5’-AMP Sepharose 4B was unsuccessful in the cases 
of KllOA and Kl 10M mutants. Therefore, gel filtration chromatogra- 
phy using Sephacryl S-200 (3.2 x 85 cm) was performed. Yields of 
activity of the mutant enzymes were 4&50% and 15-50 mg of enzymes 
were obtained from 1.6 1 of culture. No significant decrease in enzyme 
activity was observed during a-thrombin cleavage to release the au- 
thentic soluble form of the enzyme from the fusion protein with /?- 
galactosidase [12] for all the mutant enzymes. Purity of the mutant 
b,Rs was judged by polyacrylamide gel (12.5%) electrophoresis in the 
presence of sodium dodecyl sulfate [17]. 

2.4. Steady-state kinetics 
Enzyme activity was assayed and kinetic properties were obtained 

as described previously [18]. 

3. RESULTS AND DISCUSSION 

3.1. Pudjication of the mutant enzymes 
We have constructed three expression plasmids which 

overproduce KllOM, KllOA, and KllOR mutant en- 
zymes as described in section 2 to clarify the role of 
Lys-110 which was formerly suggested to be involved in 
NADH binding by the chemical modification experi- 
ments of Hackett et al. [lo]. Since the &, values of 
KllOM and KllOA mutants for NADH were in- 
creased, the purification procedure for these mutants 
was modified as described in section 2. 

3.2. Kinetic properties of the mutant enzymes 
The kinetic properties of prepared mutant and the 

wild-type enzymes are presented in Table I. K, values 
of purified Lys- 110 + Ala and Lys-110 + Met mutants 
for NADH were 202-fold and 1,120-fold higher than 
that of the wild-type, respectively, while the value of the 
Arg mutant was almost the same as that of the wild- 
type. The higher K, value of the Met mutant for NADH 
might be due to a conformational change caused by 
replacement of Lys-110 by a more hydrophobic residue, 
Met, as expected from the elevated &, for cytochrome 
b, and reduced k,,, value of the mutant. In contrast to 
KllOM, KIlOA showed a milder change in both K,,, 
and k,,, values, suggesting that Kl 10A has little confor- 

mational change; this replacement is therefore more 
suitable to evaluate the role of the residue. According 
to the study of Bordo and Argos [19], the replacement 
of Lys with Met seems not to be appropriate to evaluate 
the role of the Lys residue, although this has been per- 
formed in many site-directed mutagenesis studies prob- 
ably because of the similar length and bulkiness of the 
side chains of Lys and Met. Their statistic study of the 
amino acid sequences of evolutionarily related proteins 
showed that a Lys to Met substitution in the course of 
evolution is rarely found either in buried and exposed 
residues [19]. Ala and Thr are the most suitable residues 
to substitute for Lys to evaluate the functional role of 
amino group of the residue [19]. Kl 10A was shown to 
have 200-fold elevated K, value and 85% of the k,,, 
value, compared with the values of the wild-type. The 
kinetic properties of KllOR were essentially the same 
as those of the wild-type. From these results we con- 
cluded that a positive charge at position 110 only partic- 
ipates in the NADH binding process in the reaction by 
making an ionic interaction with the phosphoryl group 
of NADH. Apparent binding energy (dG,) of the origi- 
nal side chain was -3.2 kcal/mol according to the equa- 

tion, AG, = RT ln(k,,,lK~,,,,,,l(k~~~/K~~,,~-~~~ ]201, 
when calculated with the values of the Ala mutant. This 
value may correspond well to the deletion of one 
charged interaction in the binding process [20]. 

In contrast to our results presented above, Strittmat- 
ter et al. [l l] performed site-directed mutation of Lys- 
110 + Gln of steer b,R and observed a 130-fold reduc- 
tion of the k,,, value, and concluded that Lys-110 partic- 
ipates in both binding of NADH and orientation of the 
bound substrate. Replacement of Lys by Gln, which is 
a substitution less frequently found during evolution 
[ 191, might cause a significant conformational distortion 
leading to a reduction of the k,,, value. In this respect, 
the higher k,, values of Kl 10A obtained in the present 
study might be a better reflection of the effect of the loss 
of charge at position 110. 

The role of Lys-116 at the homologous position in 
FNR, which was shown to belong to the same family 
as b,R [9], was reported by Aliverti et al. [21]. They also 
changed the Lys to Gln and observed a significant re- 
duction of the k,,, value. This may be also caused by 

Table I 

Kinetic properties of mutant NADH-cytochrome b, reductases 

Enzymes K, @M) kc,, (s-‘) k,,,/K,,, (s-’ . M-l) 

NADH cyt. b, NADH cyt. b, 

Wild-type” 0.6 6.6 872 1,453 x lo6 13.2 x 10’ 
KllOA 121 14.2 742 6.2 x lo6 5.2 x 10’ 
KllOM 672 28.5 563 0.84 x lo6 2.0 x lo7 
KllOR 2.3 16.7 877 381 x lo6 5.3 x 10’ 

a Data are from Shirabe et al. [18]. 
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conformational distortion as discussed above. In both 
cases, however, the role of the positive residue in 
NAD(P)H binding was demonstrated, indicating that, 
in this family of enzymes, a positive residue seems to 
play an important role in substrate-dinucleotide bind- 
ing. In addition, the a-helix dipole might be also impor- 
tant for substrate binding in the enzymes of the FNR 
family as implicated by close contact of the phosphate 
group of the substrate analog, 2’-phospho-AMP, to the 
NH,-terminus of the a-helix in the NADP+ binding site, 
as shown by X-ray analysis of FNR [9]. This family of 
enzymes has the consensus sequence, GxGxxP, at the 
NH,-terminal portion of the a-helix instead of 
GxGxx(G/A), which is widely found in dinucleotide 
binding sites [22], and the dihedral angles of the first two 
Gly residues of FNR are different from those of the 
GxGxx(G/A) motif [9,22]. Furthermore, participation 
of the positively charged residue has been shown in only 
a few cases of classical dinucleotide binding proteins 
[22], in contrast to the FNR family demonstrated in the 
present study. Therefore, the enzymes of the FNR fam- 
ily are distinct from others in that both their positively 
charged residue and dipole moment of the a-helix, with 
novel structural motif, might be important in orien- 
tating the dinucleotide at the proper position for the 
reaction. 
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