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We have purified 26 insertion/deletion mutants of v-Ha-ras oncogene products produced by Escherichia coli and investigated their protease- 
inhibitory activity toward papain and cathepsins B and L. K, values for papain were relatively similar among the mutants, however, those for 
cathepsins B and L varied up to lo-fold. Among them, four mutants, l-48 LIR 54-189, l-110 LIS 112-189, l-130 PDQ 146-189 and l-155 LIR 
166-189, showed significant reduction in the inhibitory activity toward cathepsin L and these four mutants have lost transforming activity toward 
NIH3T3 mouse fibroblasts. However, some other mutants also showed no transforming activity in spite of possession of the potent protease- 

inhibitory activity, suggesting that the protease-inhibitory activity of Ras might be necessary but not sufficient for its biological activity. 

v-Ha-ras; Oncogene product; Protease inhibitor; Cathepsin; GTP binding 

1. INTRODUCTION 

ras oncogenes are frequently involved in carcinogene- 
sis of human cancers and the product (Ras) has been 
well characterized. Guanine nucleotide-binding nature, 
interaction with GTPase activating protein (GAP) and 
lipid modification of Ras have been extensively studied 
[l-3]. However, no causative function of carcinogenesis 
has been identified. We have previously reported pro- 
tease-inhibitory activity of Ras which may be a unique 
feature among oncogene products [4-61. Ras specifically 
inhibits cysteine proteinases such as cathepsins B and 
L [4,6]. It has previously been hypothesized that Ras 
causes effects as a protease inhibitor [7,8]. In order to 
examine this hypothesis, the protease-inhibitory activity 
of various Ras mutants was investigated. The results 
showed that mutated Ras with reduced protease-inhib- 
itory activity has no transforming activity. 

2. MATERIALS AND METHODS 

2.1. Preparation of Ras proteins 
Mutated rus plasmids which have the v-Ha-rus gene, with both 

insertions and deletions, have been provided by Dr. Berthe M. Wil- 
lumsen of University Institute of Microbiology (Copenhagen, Den- 
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mark) [9,10]. The mutants were named as described previously [lo]. 
For example, l-2 1 PDQ 37- 189 has insertion of Pro-Asp-Gln instead 
of deletion of the amino acid sequence between positions 22 and 36. 
Ras was purified according to the method of Lacal and Aaronson [1 11. 
E. coli bearing ras plasmids was cultured at 30°C until ODm reached 
at 0.4 and then incubated at 42°C for 6 h. Ras protein was extracted 
from E. co/i with 8 M urea, 50 mM Tris-HCl (pH 7.5), 1 mM MgClz 
and 1 mM DTT, purified through DEAE-Sephacel and Sephadex 
G-75 columns in 7 M urea, 50 mM Tris-HCl (pH 7.5), 1 mM MgCl, 
and 1 mM DTT, concentrated by ultrafiltration using PM-10 (Ami- 
con), and then dialyzed extensively against 20 mM Tris-HCl (pH 7.5), 
1 mM MgCl, and 1 mM DTT [12]. 

2.2. Assay for protease-inhibitory activity 
Papain and bovine spleen cathepsin B were purchased from Sigma 

Chemical Co. (St. Louis, MO). Porcine kidney cathepsin L and mouse 
kidney cathepsin B were purified as described previously [12,13]. Pro- 
tease-inhibitory activity of Ras was measured as follows. Cysteine 
proteinases such as papain and cathepsins B and L were activated by 
preincubation at 37°C for 10 min in 20 mM MES (pH 5.5), 2 mM DTT 
and 1 mM EDTA. These proteinases were then mixed with Ras in 20 
mM MES (pH 5.5). 2 mM DTT, 1 mM EDTA and 0.1% Brij-35 and 
l&20 mM substrate, and incubated at 37°C for 10 min [14]. Sub- 
strates used were Z-Phe-Arg-MCA for papain and cathepsin L, and 
Z-Arg-Arg-MCA for cathepsin B. The reaction was stopped by addi- 
tion of an equal volume of 100 mM sodium monochloroacetate, 30 
mM sodium acetate and 70 mM acetic acid (pH 4.3) [15]. K, values 
were determined according to the method of Dixon and Webb [16]. 

Guanine nucleotide-binding activity of Ras was quantitated using 
[jH]GTP according to the method described previously [10,17]. 

3. RESULTS AND DISCUSSION 

The protease-inhibitory activity of Ras is highly spe- 
cific, i.e. it inhibits the proteolytic acitivity of papain 
and cathepsins B and L but does not inhibit that of 
cathepsins H, C and D, chymotrypsin or thrombin ([4- 
6,141, data not shown). Fig. 1 shows typical inhibition 
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Fig. 1. Inhibition profiles of Ras toward bovine cathepsin B. Cathep- 
sin B activity in the presence of varying concentrations of Ras (0) or 
a mutant, l-48 LIR 54-189 (o), was measured and is expressed as a 

percentage of that in the absence of Ras. 

profiles of wild-type v-Ha-Ras and a mutant, 1-48 LIR 
54-189, toward cathepsin B. Ras inhibited cathepsin B 
activity dose-dependently and the inhibition was non- 
competitive. 

The K, values for papain and cathepsins B and L are 
shown in Fig. 2. The K,s for papain were not largely 
altered among mutants, suggesting that there is no in- 
dispensable region for the inhibition of papain. The 
docking model between papain and cystatin reported by 
Turk and Bode [18] showed there are multiple contact 
points between them. The three-dimensional structure 
of Ras resembles that of cystatin [ 19-211. Taken to- 
gether, loss of one contact point might be insufficient to 
significantly affect the inhibitory acitivity of Ras toward 
papain unless large conformational changes were in- 
duced. These similar K, values also imply that most Ras 
proteins were correctly re-folded after denaturation. 

K, values for bovine cathepsin B varied IO-fold 
among mutants (Fig. 2B). Especially, l-48 LIR 54-189 
showed very weak inhibitory activity toward cathepsin 
B (also shown in Fig. 1). The reduced inhibitory activity 
of this mutant was reproducibly observed among sev- 
eral lots of the preparation. This mutant can bind gua- 
nine nucleotides and also interact with GAP, however, 
it has no transforming activity toward NIH3T3 cells 
[lo]. These suggest that the deleted region (amino acid 
positions between 49 and 53) interacts not only with 
cathepsin B but also with the target. Fujita-Yoshigaki 
et al. have recently reported that the possible target, but 
not GAP, interacts with c-Ha-Ras at amino acid posi- 
tions 45 and 48 [22], which is very close to the deleted 
region. K, values for mouse cathepsin B were similar to 
those for bovine cathepsin B (data not shown). 

There were also large differences in the inhibitory 
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activity against cathepsin L among Ras mutants (Fig. 
2C). Again, l-48 LIR 54-189 showed a very high K, 
value toward cathepsin L. Furthermore, three other 
mutants, l-110 LIS 112-189, l-130 PDQ 146-189 and 
l-l 55 LIR 166-189, had very weak inhibitory activity. 
All of these mutants had no transforming activity [lo] 
(Table I). Thus, at least four domains are required for 
Ras to inhibit cathepsin L effectively, i.e. amino acid 
positions between 49 and 53, 109 and 111, 139 and 142, 
and 162 and 165. 

Table I summarizes the protease-inhibitory activity of 
Ras mutants together with their transforming activity 
toward NIH3T3 cells and guanine nucleotide-binding 
activity. Transformation-deficient mutants have lost ei- 
ther guanine nucleotide-binding or potent protease-in- 
hibitory activity. Three mutants, 1-21 PDQ 37-189, l-27 
SDQ 30-189 and l-34 LIR 38-189, have no transform- 

Table I 

Protease-inhibitory activity, transforming actlvlty and guamne nucle- 

otide-bmdmg activity of v-Ha-Ras mutated proteins 

Ras mutants Protease-mhib- Transforming GTP-binding 
itory activity” activityb activity’ 

v-Ha-Ras (1-189) 
1-21 PDQ 37-189 
l-27 SDQ 30-189 
l-34 LIR 38-189 
l-40 PD 43-189 
l-48 LIR 54-189 
l-63 SDQ 73-189 
1-68 ADQ 77-189 
1-71 TDQ 83-189 
l-89 SDQ 98-189 
1-96 LIR 104-189 
I-101 PDQ 109-189 
I-106 ADQ 109-189 
l-106 ADQ 112-189 
I-110 LIR 112-189 
l-110 LIS 120-189 
1-119 PDQ 126-189 
l-l 19 PDQ 130-189 
1-123 LIR 130-189 
1-123 LIR 132-189 

l-130 PDQ 139-189 
l-130 PDQ 146-189 
1-142 ADQ 152-189 
l-148 LIR 154-189 
1-153 ADQ 162-189 
I-155 LIR 166-189 
l-165 LIR 180-189 
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’ Protease-mhibltory activity toward cathepsm L is shown. +++, 
K, < 100nM; ff. 100 nM < K, < 200 nM: +, K, > 200 nM. 

bRelat~ve transformmg activities toward NIH3T3 cells [9,10] are 
shown. Number oftransformed foci 1s more than 10% (++), O.l-10% 
(+), and less than 0.1% (-) of that induced by the wild-type. 

‘Guanine nucleotide-binding activity of purified mutated Ras pro- 
teins. The binding activities were measured by using [‘H]GTP and 
almost comparable to those reported previously [IO]. GTP-binding 
activity 1s more than 10% (++). 0.2-10% (+), and less than 0.2% (-) 
of that of wild-type Ras. 
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Fig. 2. K, values of v-Ha-Ras and it’s insertion/deletion mutants for papain (A), bovme cathepsin B (B) and porcine cathepsin L (C). K, values were 
determined as described in section 2. Mutant names were abbreviated. For example, I-21 PDQ 37-189 was described as 21PDQ37. Numbers in 

the figures reprersent K, values (nM). 

ing activity possibly because of the deletion in the inter- 
action domain with GAP [23,24]. We cannot explain 
why three mutants, I-40 PD 43-189, 1-89 SDQ 98-l 89 
and l-l 53 ADQ 162-l 89, have completely lost the trans- 
forming activity. Thus, protease-inhibitory activity of 
Ras alone may be necessary, but not sufficient, for its 
biological activity. 

The present manuscript shows that reduced inhib- 
itory activity of Ras toward cathepsin L is related to the 
loss of the biological activity, and that the target of both 
Ras and cathepsins may associate with Ras at a similar 
domain, namely amino acid positions between 49 and 
53. These data alone might be insufficient to define 
cathepsin L and/or cathepsin B as the target of Ras. It 
remains to be determined how protease-inhibitory ac- 
tivity of Ras is regulated by guanine nucleotides and/or 
GAP, and how activating point mutations in Ras could 
affect the protease-inhibitory activity. However, our re- 
cent work has shown that K, of c-Ha-Ras toward 
cathepsin B is 3-fold higher than that of v-Ha-Ras, 
although it’s K,s for papain and cathepsin L are similar 
to those of v-Ha-Ras (manuscript in preparation). 
Thus, it is not too far from the truth to say that the 
target of Ras is cathepsins B and/or L, and even if the 
target is not cathepsins, the target may be structurally 
related to cathepsins because they bind the same region 
of Ras. 
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