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The formation of a stable complex between glutamyl-tRNA synthetase and the first er:zyme of chlorophyll biosynthesis glutamyl-tgNA redactase 
was investigated in the green alga C[tlcttJt)'dt~tttotta.~ rehthal'dtii. Apparently homogeno'.as enzymes, purified after previously established purification 
protocols were incubated in various combinations with ATP, glutamate, tRNA ~ and NADPH and formed complexes were isolated via glycerol 
gradient centrifugation. Stable complexes were detected only after the preincubation of glutamyl.tRNA syntbetase, glutamyl-tRNA reduetase with 
either glutamyl-tRNA or free tRNA TM, ATP and glutamate, indicating the obligatory requirement of aminoaeylated tRNA c~ for complex 
formation. The further addition of NADPH resulting in the redaction of the tgNA-bound glutamate to glutamate l-semialdehyde led to the 
dissociation of the complex. Once complexed to the two enzymes tRNA ~" was found to be partially protected from ribonuelea~ digestion. 
Escherichla coil, Bacillus st~btilis and S),nec'hoc),~'tls 6803 tRNA c~" were efficiently incorporated into the prote in-gNA complex. The detected 
complexes provide the chloroplast with a potential channeling mechanism for GIu-tRNA t~ into chlorophyll ~ynthesis in order to compete with 

the chloroplastic protein ~ynthesis machinery. 
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1. INTRODUCTION 

In the green alga Chlamydomonas reinhal'dtii 5-ami- 
nolevulinic acid (ALA)o the general precursor for chlo- 
rophyll biosynthesis is synthesized from aminoacylated 
glutamyl-tgNA (Glu-tRNA c;~") [1-3]. Glutamyl-tRNA 
synthetase (GluRS) initially forms GIu-tRNA G~ for 
chlorophyll- and protein biosynthesis [4.-6] before glu- 
tamyl-tRNA reductase (GIuTR) reduces the activated 
glutamate to glutamate 1-semialdehyde (GSA) [7,8]. 
Glutamate 1-semialdehyde aminotransferase (GSA- 
AT) finally transfers in a pyridoxal 5-phosphate-de- 
pendent reaction the amino group located at the C2 
atom of  GSA to the C 1 position releasing 5-aminolevul- 
inic acid (ALA) [9,10]. All three enzymes from C. rein- 
hardtii have been purified and characterized previously 
[4,7,9,11]. Partial amino acid sequences of  the GIuRS 
demonstrated its structural relationship to known 
prokaryotic GIuRS enzymes [6]. The tRNA Gl~ cofactor 
has been isolated and sequenced and two duplicated 
genes were cloned from the chloroplast genome of C. 
reinhardtii [12,13]. In vitlo transcription of one of the 
genes was independent of its 5'-region and did not seem 
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to be regulated by light [14]. All isolated C. reh;hardtii 
chloroplastic tRN/~, 6~" species equally sustained chloro- 
phyll and protein biosynthesis [6]. Purification of 
GIuTR was difficult due to its low cellular abundance 
[7,8]. These findings raise the question of  how chloro- 
phyll synthesis can compete with plastitic protein bio- 
synthesis for aminoacylated tRNA ~". The availability 
of  purified enzymes and tRNA led to the investigation 
of  a potential channeling mechanism via complex for- 
mation between the different enzymes and the tRNA. 
This communication describes the formation, isolation 
and initial characterization of  complexes between 
GluRS and GIuTR in the presence of  aminoaeylated 
tRNA °x~. which may provide the basis for a tRNA 
channeling mechanism into chlorophyll biosynthesis. 

2. MATERIALS AND METHODS 

Biodlemieals were from Sigma Chemical Co. [14C]Glu (285 mCi/ 
mmoi) and [~'P]ATP (400 Ci/mmol) were obtained from Amersham. 
Purified E. coli tRNA G~u was purchased from Boehringer Mannhcim. 
Syn¢chocystt~" tRNA was a gift from Dr. G.P. O'Neill. Purified B. 
subti[is tRNA TM was ~ gift from Dr. Y. lshino. For the tests of the 
various tRNAs in the C. retnhardtii system 15 pmol [~CIGI u-IRNA aJu, 
previously an~.inoacylated with homologous Glug$,  were employed 
[8]. The C. reinhardtli cell wall reduced strain CC..400 cw-15mt+ was 
a kind gilt from Dr. Elizabeth H. Harris, Duke University, North 
Caro!il:a, USA. C. reinhardtli cells were grown in the light and a 
cell-free extract was prepared as described in detail before [4,14]. 
GIuRS, GluTR and GSA-AT were purified from a cell free extract as 
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described [4.7,9]. All employed enzymes were cone,turreted by addi- 
tional chromatography on Mono-Q to a final concentration of 5-10 
m8 protein/ml [4], Isolation of C, reinhavdtii tRNA °~" on Mono-Q was 
perfcrrt~¢d as described reeendy (Cf-~ 7~. ~ttdlaOeiled (-~-'P~fRO¢A was 
obtained by standard methods [15]. GIuR$ and GluTR activities were 
assayed as described [4,8]. Complexes composed of purified compo- 
nents were lbrmed in GIuTR assay buffer (20 mM HEPES, pH 7.0, 
10 mM MgClz0 3 mM DTT> ~ (v/v) glycerol) at 30°C for 15 min. 
Prcimcdoahon rritxes~f0:t I~ll eonttimehb.omdt~td"fk,'~.onadt~,hu'R%, 
7-14 pmol [~aC]GIu-tRNA°~ or [-~-~P]tRNA ~ or 2 nmol [~'~C]GIu, 0.5 
.4:~ C. reinhardUi tRNA ~ and 2 mM ATP. In some experiments, 2 
mM NADPH or 20 pmol GSA-AT and 0.1 mM pyridoxal 5"-phos- 
phate were added. Purified enzymes, tRNAs and protein-RNA eom- 

dients formed in GIuTR assay buffer in a Beckman gW 50.1 rotor at 
45.000 rTm and ~C for )3,b b as detaDed beroz'e .)5,2,8,15), The 
positions of the enzymes were determined by actlvil~ *tests. Aminoacyl- 
ated [~')C]GIu-tRNA ~" and endlabelled ['~2P]tRNA°t" were identified 
and quantified by acid pn.'cipitalion and scintillation counting [4]. For 
the RNam A protection assays samples containing 10 pmol GIuRS, 
l 0 pmol (3 IuTR with either 25 pmol [~C]GIu.tRNA TM or with 0.2 A.,~,0 
tRNA ~t", 500 pmol p~C]Glu and 2 mM ATP were incubated for the 
time points indicated before 5 gg/ml RNase A were added. RNase A 
treatment was performed for 5 rain on ice before the formed complexes 
were s~iment~d through a glycerol gradient and the amount ofami- 
noacylated tRNA in the complex containing fraction 13 of the gradi- 
ent was determined as described above. 

3. R E S U L T S  A N D  DISCUSSION 

3.1. GluR$ and GluTR form a stable complex bt the 
presence o J" anffnoacylated tRNA ah' 

During the initial characterization of  purified GIuTR 
f rom C. t'e'tnhardt'~'~ stable comja~excs between the ert- 
zyme and GIu- tRNA °)" were isolated by glycerol gradi- 
ent centrifttgation [7]. In the course of  the experiments 
higher molecular complexes were observed while incu- 
bating crude enzyme fractions containing both GIuRS 
and G l u T R  activities in combination with free tRNA ~", 
ATP and glutamate {discussed in [7]). In order to gain 
further insights into the nature of  those complexes, ex- 
perinaents with purified GIuRS and GIuTR were per- 
formed. The same analytical system of glycerol gradient 
centrifugation was employed. Single marker runs with 
purified components revealed the sedimentation posi- 
t ion ~oc ~ree ertd~a~e~e~ t~ ,~A,  G~ttRS and G~u'l'R Z~ 
fractions 3, 6 and 9, respectively (Fig. 1A). Parallel 
centrifuged market' proteins of  M~ = 66,000 (bovine 
serum albumin) and 116,000 (fl-galactosidase) were de- 
tected in fraction 6 and 9, confirming the previously 
observed M:va lues  for GIuRS (62,000) and GluTR 
(130~000) from C. reinharcltl~ (d0,ta taot sl~own). Preincu- 
button of  GIuRS, GIuTR and endlabelled t R N A  °~" in 
the presence of  ATP shifted part  of  the employed t R N A  
into the position of the synthetase, indicating its com- 
plexadon with the enzyme (Fi~. I B). Similar results 
were observed earlier with GIuRS from E. colt [18]. In 
good agreement with earlier experiments, no binding of  

we failed to detect the formation of  a stable complex 
between the two enzymes in the presence ~F]g. ~B) or 
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Fig. 1, Isolation of complexes between C, reinhardtii GIuR$ and 
Glu'rR in the pres,"nee ofaminoaeylated tRNA 6~" by glycerol gradient 
setiimemmion, Amounts of employed enzymes, col'actors and tRNAs, 
conditions of preineubation, separation via glycerol gradient centrifu- 
gation and the determination of the position of the enzymes and 
tRNAs are given in detail in section 2. (A) Separate marker eentrifu- 
gations wi;l~ l~ui'i,qed GIuRS, GluTR and [~"P]tRNA °~. (B) Separa- 

oCpre/ncuba~:ed u"fa~, tTfu T'R anff t RN'A~; I.'"C]'Gfu and'ATl r. (I5) 
Same as (C) with the addition of NADPH. 

absence (data not shown) of  flee tRNA °~. Addition of  
glutamate to the preineubation, allowing the ami- 
noacylation reaction to proceed, drastically changed the 
sedimentation position of the employed components.  A 
new high molecular weight complex of  approximately 
M~ = 200,000 was detected in fraction 13 consisting of  
GIuRS, GIuTR and aminoacylated tRNA °~" (Fig. IC). 
Almost all aminoacylated t R N A  and most o f  the em- 
ployed enzyme activities were part  of  the complex. Sim- 
ilar results were obtained with the preincubation of  
GIuRS, GIuTR and [~4C]GIu-tRNAGI" {data not 
s~towrt), ~rtcttb~ttiot~ o? ,oaffto2~y pm"~ed C ~'e2,-Bz, z~-dc, t7 
chloroplastic methionyl- tRNA synthetase with GluTR 
in the presence of  tRNA a4~t, methionine and ATP failed 
to produce detectable complexes and served as control 
for the specilicity of  the complex formation (data not 
shown). 

3.2. Dissociation o f  the GIuRS-Gh~TR-RNA complex 
ttpotz addition o f  N A D P H  

Almost no G l u R S - G I u T R - G I u - t R N A  °1" comple:¢es 
(fraction 13) were detected when N A D P H  was present 
during the preincubation. The enzymes sedimented as 
single proteins into fraction 6 (GIuRS) and 9 (G1uTR) 

reduetase reaction to proceed and lead to the deaeyla- 
tion o1" t R ~ A  ~°~" with the subseqlJent release oT GSA as 
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described earlier [7,8]. This result suggests that the pre- 
viously discovered necessary integrity of  the aminoacyl 
bond between tRNA ~ and ,glutamate for the efficient 
~ecognh,~on and binding of  tRNA ~ by GluTR a~,o~e [7] 
is also a basic requirement for its higher molecular com- 
plex with GIuRS and GIuTR. 

Como lex formation of 0urified C reinhardtit GSA- 
/£ F efifier w~Lfi tile fitgfi mol~culhr compibx obscrlBea' 
above or at least with GIuTR alone might prevent the 
release of GSA, which is unstable under physiological 
conditions. However, attempts to integrate GSA-AT 
~tecfvfcy frrco any ~(aa' of'scab?¢ ¢ofap?t~.x/'aft'eft. 

3.3. Complex formation protects tRNA ~t'' fi'om RNase 
digestion 

For an initial characterization of  the process of com- 
plex formation the sensitivity of" complexed GIu- 
tRNA ~t~ to digestion by RNase A was analyzed at var- 
ious time points during complex formation as outlined 
in section 2. The detected complexed tRNA ~" in frac- 
tion 13 of the gradient after I5 rain preincubation time 
without the addition of RNase served as control and 
was defined as 100%. All other obtained values for com- 
plexed tRNA in fi'action 13 of  the gradient were related 

35% o f t R N A  "~h/?om RNase A (6ata not sfiown}. l"fii's 
result was used in the time course of Fig, 2 to measure 
complex formation by protection of  the complexed 
tRNA from RNase digestion. Moreover, the experi- 
~ s s t  e,om~red ~ o ~ p : ~  t"os's~xaB~s~ of  prev~ottr~'y ars;.t- 
noacylated tRNA a~ with the reaction of  free tRNA and 
glutamate in the presence ot' ATP. Fig. 2 shows that 

a3ol- I 
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Fig. 2. Time course of complex formation analyzed by the protection 
of tRNA from RNus¢ A digestion. Samples (0,1 ml) containing 
GL-TR, GluRS and either [~C]CIIu-tRNA G~ (x---x) or [t~C]Glu, 
tRNA °*~ and ATP (o--o)  were incubated under standard conditions 
outlined in section 2. RNase A was added at the indicated times after 

ent centr~F'agat~bn. (fie amount of'raaioacnge am~hoacy~t~ea'cfC~'g 
in fraction 13 of the gradient was determined and related to ~amples 

wiihoul RNnse l r ~ l m e m  (=JO0~) a.s d~scri~'d i .  ~ccJion 3. 

Table I 

Transfer RNA ~pecificity of complex formation 

V..omg'~exe6 ~.v%-~'ta .'tR~ A~" 
(pine)? 

C. re#thardtii i 2.3 
E. colt 13,1 
,~'tt~ct lu~ y.~'r L¢'dt~ ~ ~ 92.~ 
bL sttbttlis 8.4 

Assays (0.1 nil) containing 15 pmol [~aCIGIu.tRNA ~", 20 pmol C. 
reinhardtU GluRS and GIuTR were carried out with additions and 

isolated and g uantitated as described in detail in ~eetion 2. 

complex formation with previously aminoacylated 
tRNA occurred after 3-4 min while complex formation 
from free tRNA and glutamate takes approximately 5 
min longer due to the initial aminoacylation reaction 
required for the formatiort o f  GIu*tRNA ~ .  These re- 
suits demonstrate the tight nature of  the complex and 
emphasize again the importance of  aminoacy!ated 
tRNA for its formation. 

Complex formation wi~.h aminoacylated tRNA ~1'' 
fi'om various species was tested in order to gain insights 
to the tRNA specificity of  the reaction. The amount  of 

tion of its acceptance by the enzymes. The C. reinhardtff 
enz2/mes formed a complex with all of the charged 
tRNAs tested, although the degree of  complex forma- 
tion varied slightly (Table 1). These findings are in good 
agreement with Ihe broad tRNA-specifieity of the C. 
reinhardtff enzymes [1 4,19]. 

3.5. Complex formation for tRNA chamleling hzto chlo- 
rophyll synthesis 

C. reinhardtii GIuTR seemed to be of  low cellular 
abundance [7]. Both chloroplastic tRNA Gt" species zus- 

If aminoacylated tRNA Q~ was released from GIuRS, 
then GluTR would have to compete with the abundant 
protein synthesis machinery for the GIa-tRNA~% The 
highly specific complex between GIuTR and GIuRS 
that was detected in the presence of aminoaeylated 
tRNA ~ could be the basis for a tRNA channeling 
mechanism into chlorophyll synthesis in order to satisfy 
the tRNA requirements for this biosynthetic route. This 
is similar to the proposed channeling of  arginyl-tRNA 
into the ubiquitin-dependent protein degradation sya- 
tem in mammalian cells [20]. 
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