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The httmaa dihydrofolate redttctasc and mismatch repair protein I ~,cacs arc orgart[zcd [rt a head-to-head cortfigaratiott separated by an SS bas~-pair 
se~,,rnenl and directed by a bidirectional promoter. In vivo transient assays of the site directed mutant promoters using firefly luciferase as a reporter 
showed that an AT-rich sequence, ACAAATA, in the GC-rich promoter sequence is not required for transcription. However, two out of four GC 
boxes were shown to function as bidirectional positive regulatory elements. Among them, a GC box at the midpoint of the re~ion between the 

two initiation sites is essential lbr supporting minimal bidirectional activity. 
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1. INTRODUCTION 

We have recently isolated and characterized eDNA 
clones derived from transcripts initiated 89 base pairs 
upstream from the DHFR gene but transcribed from 
the opposite strand [1]. The divergently transcribed gene 
encodes a protein highly homologous to a bacterial 
DNA mismatch repair protein, MutS [2], and therefore, 
we have named it the human mismatch repair protein 
1 (MRP1). A homologous gene also has been identified 
in the region upstream from the mouse DHFR gene [3]. 

We have previously shown that as small as a 165 bp 
D N A  fragment from -111 to +54 relative to the DHFR 
initiation site has bidirectional promoter activity [4]. 
This sequence is characterized by richness in guanosine 
and cytosine, presence of four GC boxes, and lack of the 
typical TATA or CAAT boxes. Instead, this promoter 
contains an AT-rich sequence ACAAATA at 29 bp up- 
stream from the DHFR start site [5]. Previous studies, 
using in vitro transcription assays, have shown that the 
multiple GC boxes and the sequence surrounding the 
,~nitiation site play important roles in transcription of 
the DHFR gene [6-9]. However, the promoter elements 
for MRP1 expression have not been studied so far, 
primarily because MRP1 transcripts could not be de- 
tected by in vitro transcription assays [101. We have 
recently demonstrated that an in vivo assay based on 
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transient expression of  heterologous reporter genes can 
be used for detection of bidirectional activity of the 165 
bp promoter sequence [4]. In this study, using the firefly 
luciferase gene as a reporter, we examined the role of  the 
AT-rich sequence and the multiple GC boxes in the 
control of both DHFR and MRP1 expression. 

2. MATERIALS AND METHODS 

2.1. Plasmid con~'trtwtiott 
A basic plasmid ct/~SX was constructed by insertion of two polyad- 

enylation signals from the human globin genes into the plasmid 8X 
II 1], to minimize interference between sen.~e and antisense transcripts 
derived from the bidirectional promoter in a circular plazmid. The 114 
bp wild type or mutant bidirectional pron~oter sequences from -99 to 
+ 15 relative to the DHFR initiation site were chemically synthesized 
(BP). Thee  fragments were inserted between the P#tl and Hindlil sites 
ofcTflSX, yielding BP/~/~SX. The DNA fragment containing the firefly 
luciferase ¢odin$ sequence and the SV40 polyadenylation signal (Luc 
[12]) was inserted into either the PstI and BamHl sites (MPRI side: 
BP-M-Lu¢) or the HindllI and Xhol sites (DHFR side; BP-D-Luc) 
(Fig. 1). 

2.2. In rivo transiettt assa)' 
Ten/.ig of lueiferase plasmids and I/zg of RSV-CAT as an internal 

control were co-transfeeted into :5 × 10 ~ HeLa cells in 10 em dishes by 
the CaPO~ method, and cell lysates were prepared two days after 
transfection. Lueiferase activity 112] was normalized for transfection 
efficiency by CAT activity [13]. 

2.3. RNase protection assa), 
Fifty ,ttg of BP-M-Luc or BP-D-Lue and 10/.tg of the internal 

control plasmid containing the RSV driven human growth hormone 
gene (RSV-GH) were co-introduced into 1.5 × 107 HeLa cells in 15 em 
dislaes and total RNA from transfceted HeLa cells was analyzed by 
RNaae protection analyses [1] using the ML or DL ribopro~s plus 
the growth hormone exon 1 riboprobe. The ML riboprobe is derived 
from the 370 bp Hinll (within tim luciferase gene 250 bp down:itr~am 
from the junction to the DHFR/MRPI promoter)-Hindlll fragment 
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Fig, 1. Construction of firefly luciferase expression vectors for studying the DHFR/MRPI bidirectional promoter. 

of BPwt-M-Luc. while tile DL riboprobe is derived from the 370 bp 
Pstl-Hhtfl fragment of BPwt-D-Lue. 

3. R E S U L T S  

The  114 bp bidirectional p r o m o t e r  was chemically 
synthesized (BPwt),  and  the Iuciferase coding sequence 
was l inked to either the D H F R  side (BPwt-D-Luc)  or 
the MR P 1  side (BPwt-M-Luc)  o f  the p r o m o t e r  (Fig. 1). 
These  [uciferase constructs  and  the inlern~] ¢on~ro} 
piasmid (RSV-CAT)  were co- in t roduced  into H eLa  
ccl{s a n d  the p romote r  aetN~t), was determined by mon-  
it~r'm3 ~ e  3ud~e~'zse z~)~;~y a~wr 43 h 1F)g. 2). 7BPwz- 
M-Lue  gave a bou t  two-fold higher activity than BPwt- 
D-Luc ,  consistent  with ou r  previous results using the 

In the first experiment ,  we muta ted  an AT-rich seg- 
ment,  A C A A A T A ,  located 29 bp upst ream from the 
DHFR initiation site. This is the onty AT-rich stretch 
in the GC-r ich  p romote r  sequence. This sequence is not  

a consensus match  for the T A T A  box, but  this posit ion 
is usually occupied by the T A T A  box with respect to the 
D H F R  initiation site. Such AT-r ich  segments have been 
also found in several GC-r ich ,  TATA-Iess  p romoters  
[14--16], and some o f  these segments have been shown 
to be able to  functionally subst i tute for  the T A T A  box 
[17]. Accordingly  we wanted to examine two possible 
ftmctions o f  this element. Th e  first possibility was that 
this was one o f  the variant  fo rms  o f  the T A T A  box  and 
was ~nvo}ved in positioning ~f  the D H F R  initiation site. 
The  second possibility was that  this sequence was irrel- 
evant  to  p ro m o te r  t'unction. In  this case, however,  it 
may  be possib2e that ~acl¢ o f  the TA TA box was respoa. 
sible for  heterogenous  init iation inehtding bidirectional 
t ranscript ion.  

~e c,~eeezre¢czed cu~ ,Teeteeet ~ro~czeece ~c~d ¢?re¢~ce# 
their p romote r  activity by the luciferase assay (Fig. 2) 
and the t ranscript ion initiation site by the RNase  pro- 
tect ion assay (Fig. 3). In BP5, the  AT-rich sequence was 
des t royed by substi tut ion with O or C. This  muta t ion 
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Fig. 2. Relative lucirerase activity of the DHFR/MRPI bidirectional promoters with mutation of the AT-rich sequence. The AT-rich sequence, 
ATAAACA, is underlined. Asterisks of the mutant promoters indicate the same nueleotide as in the wild type promoter (BPw0. The lueiferase 
a¢~i'v~.~ ~7"vw,.'h'~,l'r~'cr~L "l~[r,t~ v-u'tTa 55~Vt-~Ci-'Luc or ~'Wt-'LJ/LUC'IS ~nown'm "bar grap'l] lorm, and its va~lu¢ ~ )  "is'indicated in parentheses. Data 

from at least two separate experiments with duplicate samples are averaged. Error bars represent the standard error of the mean. 
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Fig. 3. RNas~ ~roteetion an~ys~s of lueiferase transcripts. M, end- 
labeled Mspl digested pBR322 marker; pUC, control RNA extracted 
fi'om H~La ceJJs trm~ffe~ted wJlJ~ pU~ plasmid DNA. Arrows indical¢ 
the protected fra~aaents derived from correctly initiated transcripts, 
gsrerfslts indicate f/t¢ 68 Op ti'agmeac from gro~-ch ttoratoa¢ erda- 

scripts that served as an internal ~or.trol. 

fffff not result fn any sfgnfffcant cfianges fn promoter 
activit), or the initiation site for transcription in either 
direction. Therefore, this particular AT-rich sequence is 
not functional in this promoter. 

In BP4, the AT-rich sequence was substituted by the 
perfect consensus sequence of  the TATA box, TA- 
TAAA. This substitution increased D H F R  promoter 
activity (BP4-D-Luc) and decreased MRP promoter  ac- 
tivity (BP4-M-Luc) without changing tlae initiation 
sites. This mutant promoter, however, still retained bi- 
directional activity. Therefore, bidirectionality of  the 
D H F R / M R P !  promoter is not simply due to lack el 'the 
TATA box. 

In the next series of  experiments, we studied the role 
of  the multiple GC boxes in the control of  the bidirec- 
tional promoter. There are four GC boxes in the mini- 
mal DHFR/MKP1 promoter in the same orientation; 
two overlapping GC boxes in the middle of  the inter- 
genie region and two overlapping GC boxes in the re- 
gion immediately upstream from the D H F R  start site. 
In the BP! mutant, the two overlapping GC boxes were 
converted to a single copy of  the GC box in both regions 
~ ' 0 ,  "i~ofn fne "mdl~erase assay an6 an ~ a s c  pro'tcc- 
tion assay (data not shown) showed that the BPI pro- 

meter has full activity in either direction, suggesting 
that the overlapping structure of  the GC boxes is not 
important for bidirectional activity, and two GC boxes 
(1 or  11 and IIl or IV) function in this promoter. 

The consensus sequences of  the GC boxes were mu- 
tated by substitution with A or T (Fig. 4). Mutation of  
both GC boxes IlI/IV (BP7) resulted in complete loss 
of  promoter activity in both directions. Mutation of  the 
other pair of  GC boxes l/ll (BPg) 1¢d to about 50% 
decrease in activity in both orientations. BPl2  with mu- 
tations of all four GC boxes showed no activity. In 
BPl 5, the GC boxes 1/II were mutated and the GC box 
IV was deleted, and therefore, this mutant promoter 
contains only one GC box (II1) in the middle. BPI5 
retained bidirectional promoter activity (Fig. 4). 

These results suggest that the G C  boxes are able to 
activate transcription initiation complexes on both 
sides. One middle GC box is essential for supporting 
bidirectional transcription. 

4. DISCUSSION 

Promoters of several mammalian genes have been 
shown to have bidirectional activity [14,15,18,19]. How- 
ever, none of  these promoters has been characterized in 
detail. We showed that the GC box plays an important 
role ~tL h[dtcactioa~[ ~cti~[ty of  the DHFIL/MRP1 pro- 
moter. Since the GC box has b ~ n  found in eitherorien- 
tation in many promoters, this element has been 
thought to regulate transcription in an orientafionAnde- 
pendent manner (2~]. Our res-lcs showed that the G C  
box is able to function as a bidirectional activator ele- 
tttettt, It [xas beert reported that Spl  molecules bind to 
Erie G'C ~oxes afro' selma/ace C~ctscriff¢i~a ~Ft/~¢ ac~a~'e 
D H F R  gene [6]. Two initiation complexes for D H F R  
and MRPI  transcription appear to share these Spl mol- 
ecules. 

A middle GC box was shown to be essential for tran- 
scription of both the D H F R  and the MRP1 genes. An- 
other GC box immediately upstream of the D H F R  ini- 
tiation site is not essential, but activates transcription of 
both genes. The difference in activation efficiency of 
each GC box might depend on the sequence surround- 
ing the GC box or the distance between the GC box and 
the initiation site. 

Because the GC box has been found in many unidi- 
rectional promoters, the GC box alone could not be 
sufficient for bidirectional activity. Transcripts o f  both 
D H F R  and MRP1 genes start at specific sites. Our 
results confirmed that positioning of  the initiation sites 
o f  these genes is regulated in a TATA-independent man- 
ner. Recently, Means and Farnham [9] suggested that 
transcription initiation from the mouse D H F R  gene 
may be positioned by an initiator element, that specifies 
the initiation site within the element itself [21]. In con- 

utilization in the Chinese hamster D H F R  gen¢ is mainly 
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Fig. 4. Relative luciferase activity of the DHFR/MRPI bidirectional promoters with mutation of the GC boxes. Consensus sequences of four GC 
boxes were boxed [23]. Experimental conditions are the same as described in Fig. 2. 

regulated by upstream GC boxes. Thus, transcription 
initiation from the TATA-less promoter of the DHFR 
gene seems to be regulated by interactions of  upstream 
GC boxes and the initiator element. Although the mech- 
anism of positioning of MRPI transcripts has not been 
studied, another positioning element might be required 
for accurate and efficient expression of  the MRPI eerie, 
and existence ofa  GC box and two positioning elements 
on both sides might be sufficient for minimal bidirec- 
tional activity. 
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