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We determined along the small intestine of young and adult rabbits the activities of lactase (LPH) and sucrase (Sl), the levels of their cognate 
mRNA~, and examined the in vitro biosynthesis of LPH and pro.Sl. Lactate activity is low in the proximal 1/3 of the intestine, whereas the mRNA 
levels are high. However, the rates of biosynthesis of the LPH forma correlated well with the steady-state levels of LPH mRNA in all see~nents, 
indicating that factor(s) acting post-translationally produce a decline in brush border LPH in the proximal small intestine. These factor(s) are not 
involved in the processing of pro-LPH to mat ure LPH, since the relative amounts ol'the various l'onns of LPH are almost the same :dong the small 
intestine. Unexpectedly, we find that also for SI the ratio of activity to mRNA is low in proximal intestine. The biosynthesis ol'pro-Sl ~rrclates 
with the steady-state levels of its mRNA. Hence, the steady-state levels o1" LPI-I and Sl along the small intestine arc regulated both by mRNA level5 

attd by posttranslational factor(s). 

Lactase-phlorizin hydrolase; Saerase-isomaltas¢; Regulation; Small intestine 

1. INTRODUCTION 

Small-intestinal lactase (also called lactase-phlorizin 
hydroiase, lactase-glycosylceramidase EC 3.2.1.23/62, 
or LPH) develops prior to birth and declines in most 
mammals at the time of  weaning or shortly thereafter 
[1-3]. An exception is man: in about one half of  man- 
kind laetase does indeed decline in early youth (the 
so-called 'adult-type hypolaetasia'), but in the other 
half, including northern Europeans, it remains at high 
levels in adulthood also. 

The mechanism whereby lactase declines in some 
human populations and in other mammals is far from 
clear. Indeed, it is not even known whether the same 
mechanism(s) act in man and in other mammalian spe- 
cies. LPH-mRNA has been reported to remain at high 
levels after the decline of  lactase enzymatic activity in 
rabbits [3], rats [4-6], and man [3]. Others have instead 
observed a decline in LPH-mRNA, in adult sheep [6] 
and also in rats [7] and man [8,9]. The rate of biosynthe- 
sis of  LPH in adult rats in vivo has been reported to be 
reduced as compared to that in baby rats [10] or not to 
be reduced at all [11,12]. 

A potential source of  these discrepancies may have 
been the segment(s) of  the small intestine used in these 
studies. In fact, in adult rats, a~ compared to baby rats, 
the ratio of  lactase enzymatic activity to LPH-mRNA 
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varies widely along the small intestine [5]. Similarly, in 
humans with adult-type laypolactasia low levels of LPH- 
m R N A  have been reported in biopsies stemming from 
duodenum (e.g. from peroral endoscopic biopsies) but 
high levels of  LPH-mRNA are in general found in more 
distal segments of small intestine [3]. Another source of 
this discrepancy is undoubtedly the very large individ- 
ual variability in the time of  onset of LPH decline. For  
example, we have observed in the rabbit that lactase 
decline may in some individuals be nearly complete at 
30 days [3], whereas in others laetase activity may still 
be high in adulthood. 

We have now investigated the levels o f  lactase, su- 
crase.isomaltase (as a reference), their mRNAs, and 
their in vitro biosynthesis along the whole small intes- 
tine in rabbits (adult rat small intestine is notoriously 
difficult, if not impossible, to cultivate in vitro). In each 
animal the various intestinal segments would serve as 
the control for the others, thereby reducing or eliminat- 
ing the variability related to genetic, hormonal, dietary, 
circadian, and perhaps other factors. 

This paper addresses the following questions. (i) Does 
the ratio of  laetase activity to LPH-mRNA change 
along the small intestine? (ii) Do the LPH-mRNA levels 
correlate with the rate of biosynthesis of LPH in organ 
culture? (iii) How do these observations compare in the 
rabbits of the two ages considered, i.e. shortly after 
weaning (36 days) and adult (3.5 years)? As a reference, 
the same questions were put for the sucrase-isomaltase 
complex (SI), an enzyme which in most mammals, in- 
cluding the rabbit, is expressed at the time of  weaning 
[31. 
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Both  enzymes considered in the present  s tudy are 
synthesized as high molecular  weight  precursors ,  i.e. 
p r e - p r c - L P H  with 1,926 amino  acids [13] a nd  pro-SI  
with 1,827 [14] (for the rabbit).  T h e y  are proteolyt ical ly  
processed in different  ways;  however,  p re -p ro  L P H  is 
(most  likely) first cleaved by  signal pept idase  in the 
endoplasmic  ret iculum; p r o - L P H  is then split in one or  
more  steps to the ' f inal '  L P H  of  the brush b o r d e r  mem-  
brane [15,16], and  to  one o r  more  ' p ro , sequences '  o f  
unknown  cellular location(s) and  biological  role(s). Pro-  
SI instead reaches the brush bo rde r  m e m b r a n e  intact, 
and is split by pancrea t ic  protease(s)  in to  the two ho- 
mologous ,  but  different,  subuni ts  o f ' f i n a l '  S1 (reviewed 
in [17]). Both  p r o - L P H  and pro-SI  undergo  the usual 
glycosylat ion steps dur ing  transit  t h rough  the endoplas-  
mie retieulttm and Golgi  appara tus .  

2. M A T E R I A L S  A N D  M E T H O D S  

2.1. Anhnals atzd preparation of whole small itttesthte 
New Zealand White rabbits (36 days and 3.5 years old) were fasted 

for 41 hours with free access to drinking water. After sacrifice (at 09.00 
h) the small intestine, delimited by the pylorus and by the ileocecal 
junction, was excised and divided into 8 parts of equal length. A 
section about 1 cm long from the middle of each segmeut was u~ed 
for organ culture. The remaining 16 pleees (named IA and I B, etc.) 
were extensively rinsed with 0.9% NaCl, frozen in liquid N,, and then 
reduced to small pieces with a mortar and pestie (cooled with liquid 
N.0. Tissues were stored at -80"C. A sample of liver was taken as a 
negative control. 

22. Eny:me and protein assays 
Tissues were homogenised (2 rain, half-maximal speed), with a Poly- 

tron mixer (Brinkmann Instruments Inc., Westbury, NY) at about 70 
ing per ml homogenate buffer (0.9% NaCI, 0.1% Triton X-100, 0.5 
mM PMSF, 0.5 mM ortho.Phenanthroline). Aliquots for total RNA 
deterlnination were immediately frozen at -80°C. Protein was esti- 
mated by :he method of Bradford [18l; the homogenates were then 
diluted to 1 mg protein per ml and immediately used for enzymatic 
assays and for more accurate protein determination by the method of 
Lowry gt al. [19] as modified by Peterson et al. [20]. 

Total lactase activity, a¢id-fl-galactosidase activity, and brush bor- 
der lactase activity were determined as described by Villa et al. [21]. 
Suerase activity was measured at 37°C in 33 mM Na-malgale buffer, 
pH 6.0, using 33 mM sucrose as substmte. After boiling for 2 rain, the 
D-glucose liberated was determined with o-~lueose dehydrogenase 
(Merck). 

2.3. RNA analysis 
Total RNA in crude homogenates was determined by the orcinol/ 

F¢CI~ method, adapted from [22-24]. In sl~ort, 5 m8 of homogenized 
tissue was diluted to 100/al with water. Proteins and nucleic acids were 
precipitated by addition of an equal volume of 12% trichloroacetic 
acid. After centrifugation the pellet was dissolved in 10t)/.tl of 0.2 N 
NaOH and incubated at 75°C for 60 rain. Protein was precipitated by 
adding 15/al of concentrated HCI. The supematant was mixed with 
an equal volume of the oreinol reagent (1 mg FeCl.v6 H,O, 1 mg 
oreinol per ml concentrated HCI), and then boiled for 45 min in a 
water bath. Hydrolyzed RNA was determined at 610 nm. Yeast tRNA 
was used as a standard. 

Total cellular RNA was purified by a urea-lithium chloride method 
[25]. Standard RNAs were prepared by in vitro transcription of plas- 
mids containing LPH [13] and SI [14,26] sequences. Transcripts con- 
taining nueleotidgs 1-3601 and 1-713 of LPH and $1, respectively, 

were purified by agarose l~el electrophoresis, eluted, and quantitated 
by UV absorption. 

RNA (3 gg; standard RNA was diluted with yeast RNA) was 
denatured with formaldchyde/formamide [27] and applied to Gene 
Screen membrane (New En81and Nuclear) using a 'slot blot' apparatus 
{BioRad). Hybridization was carried out with ~2P-labelled [28] frag- 
ments of LPH and SI eDNA (same sequences as present in standard 
RNAs), with final washing in 0.2 × SSPE [27], 0.2% SDS, at 65"C. 
Appropriate autoradiographic exposures were quantitated by den- 
sitometry with a DeSaga CDS0 chromatogmm scanner. 

2.4. Organ culture and tmmwtoisolation 
Explants were cultured as described by Browning and Trier [29] 

with modifieations according to Naim et al. [30] and Lottaz et al. [31]. 
In brief, after 2 h in methionine-free medium explants were labelled 
continuously for 6 h with 150 ~tCi [~S]methionine (Amersham) in 1 
ml medium. After washing, tissues were solubilized by homo/~eniza- 
tion with 1% NP.40, 1% deoxyeholate in the presence of pretense 
inhibltors, cleared by ceutrifugatioa at 100,000 x g, 'pr~leared' by 
incubation with protein A-Sepharose (Pharmacia), and SI and LPH 
were immunoisolated using guinea pig anti-LPH and anti-SI scra 
bound to protein A-$epharose, all as d~eribed in [31]. The products 
were analyzed by SDS-PAGE in 5% aerylamide gels [32]. 

2.5. Calculations 
Amounts of standard RNA were converted to amounts of mRNA 

by multiplying by (length of mRNA + length of standard RNA). 
Milliunits of enzyme activity per/~g of the corresponding mRNA were 
calculated as E/(R × M), where E = milliunits of enzyme activity per 
ml homogenate, R = mg total RNA per ml homogenate, and M --/~g 
cognate mRNA per mg total RNA. 

To quantitate in vitro biosynthesis of LPH and SI, digital images 
of the gels produced with a Phosphorlmager scanner were quantitated 
using lmagequant 3.2 software (both Molecular Dynamics, Sun- 
nyvale, CA). The 'detector counts' in each band were divided by the 
number of mgthionine residues in the corresponding protein (25 for 
pro-LPHo about 23 for the 185-190 kDa lbrms, and 15 for matur:" 
LPH) to correct for size differences among the polypeptides, and the 
result divided by the acid-insoluble cpm in the total protein with which 
the immunoisolation was performed, to correct for differences in la- 
bellin 8 effieicncies. These values are referred to as specific incorpora- 
tion into LPH. 

3. R E S U L T S  A N D  D I S C U S S I O N  

Lac tase  and  sucrase  enzymat ic  activities were meas-  
ured in 16 segments  a long  the  small intestine (Fig.  1A 
and  D). Bo th  activit ies peak  in the mid- th i rd  o f  the 
small intestine, a n d  are lower  at  the ends. This  pa t t e rn  
is c o m p a r a b l e  to  tha t  in the rat  [5], but  the rabb i t  seems 
to show a s teeper  d r o p  in activity in the p rox imal  jeju- 
num.  Sucrase  is h igher  in the adult  animal  and  peaks  in 
je junum.  

L P H  and  SI m R N A s  were measured  with a slot  blot  
p rocedure  (Fig. 2 and  no t  shown),  a n d  by  N o r t h e r n  
blot t ing (ne t  shown) .  Both  L P H  and SI m R N A s  are at  
high levels in the  proximal  and  mid small intestine (Fig. 
1 B, E), with the weight  o f  the dis t r ibut ion being shifted 
proximal ly  c o m p a r e d  to  the dis t r ibut ion o f  enzymat i c  
activity. To  m o r e  clearly relate m R N A  levels to  enzy-  
mat ic  activity, w c  . . . . . .  v,v,,,,,,~,,,,,a~'~ ,,one ,,~,,o,, o . ¢ ~ t '  . . . . . .  toga t ,  , R N A  was 
chemical ly  quant i f ied  in the same h o m o g c n a t e s  used to 
measure  e n z y m e  activity, a l lowing expression o f  the 
specific activity as  m U  lactase or  suerase per  m g  total  
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Fig. 1. LPH (A, B. C) and SI (D, E, F) enzymatic activity (lactase, A 
and sucrase, D), mRNA concentration (B and E) and milliunits of  
enzyme activity per/~g of the corresponding mRNA (C and F), deter- 
mined for 16 segments along the ~mall intestine. Black bars, 36-day- 
old rabbi~; shaded bars, 3.5-year-old rabbit, o, these ratios (not re- 

ported) were inaccurate, due to the small magnitudes involved. 
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Fig, 2, Slot blot analysis of LPH-mRNA in 16 ~egments of small 
intestine from a 3,5 year old rabbit. Segment numbers as in Fig. I. 
L = liver RNA. S.0 to S-320 are amounts of standard RNA corre- 
sponding to 0 to 320 pg full-length LPH-mRNA per/~g total RNA, 

RNA. Dividing this result by the amount o f m R N A  per 
mg total RNA, determined in the slot blot assay with 
in vitro-transcribed mRNA as standard (Fig. 2), we 
arrive at mU lactase or sucrase activity per/.tg LPH- or 
SI-mRNA, respectively (Fig. 1C and F). Possibly con- 
founding variables originating in part from cells other 
than enterocytes, such as the amoant of total protein 
(which enters into the calculation of  specific activity as 
units per g protein) or amount of total RNA (in the 
calculation of  pg mRNA per/,tg total RNA), are thus 
eliminated. The enzyme activity/mRNA ratios so ob- 
tained are most instructive. Disregarding for the mo- 
ment the ratios in the disud ileum, which were inaccu- 
rate due to the low absolute figures involved, the main 
conclusions are: (i) the ratio of laetase to LPH-mRNA 
differs along the ~mall intestine, being much lower in the 
proximal third of the intestine. This effect is even more 
pronounced in the 3.5-year compared to the 36-day-old 
rabbit. (ii) Unexpectedly, we find that also the ratio of  
sucrase to SI-mRNA is very low in the proximal half of  
the intestine (Fig. 1F). At both ages the ratio changes 
abruptly approximately at the transition between the 
first and the second third of the intestine. 

.,. ~,~.,.~.d.,g ^~" . . . . . .  c . . . .  ,,...,..a., ;n,a;,.o.~ th,,t do 
not necessarily prove) that the variations in lactase and 
sucrase along the intestine are due to a post-transcrip- 
tional event. (Note that the time of  onset (see e.g. [3]) 

and the pattern of  decline of  lactase along the intestine 
are likely to vary widely among species and among 
individuals, which may well be one reason lbr the con- 
tradictions in the literature quoted in the introduction.) 

In the very same small-intestinal segments used for 
the experiments of  Figs. 1 and 2, we investigated the in 
vitro biosynthesis of  both LPH and Sl. Samples num- 
bered 1 to 8 in Fig. 3 and 4 were located in the original 
tissue between the positions IA and B, 2A and B, etc., 
indicated in Fig. 1. We measured the incorporation of  
[3~S]methionine into acid insoluble material ('total pro- 
tein'), into ilnmunoisolated LPH, and into immunoiso- 
luted SI0 after 6 h of continuous labelling in organ cul- 
ture. Fig. 3 shows an example of SDS-PAGE analysis 
of immunoisolated LPH. 

As mentioned in the introduction, LPH is synthesized 
as pre-pro-LPH. Pro-LPH is 'high mannose' glycosyl- 
ated to an apparent molecular weight of  ca. 200 kDa, 
and then 'complex glycosylated' to an apparent molecu- 
lar weight of  ca. 220 kDa. Mature rabbit LPH has a 
molecular weight of  150 kDa. Tile 185-i90 kDa forms 
observed in Fig. 3 (probably the same as the 180 kDa 
form described in [33]) :nay represent intermediates in 
the conversion ofpro-LPH to LPH, or may be dead end 
products which arc eventually degraded. In the quanti- 
tation we considered the 200 and 220 kDa products 
together ( 'pro-LPH') and the 185-190 kDa products 
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Fig. 3. SDS-PAGE analysis of LPH synthesized by explants of ~mall 
intestine of a 3.5-year-old rabbit. Lanes 1 to 8 correspond to segments 
1 to 8 in Fig. 1. Molecular weight,: of marker proteins indicated at the 

left. 

together. The radioactivity incorporated was corrected 
as described in section 2.4. 

Fig. 4A relates the in vitro biosynthesis of  LPH with 
the levels of  LPH-mRNA (calculated by averaging the 
values of the two neighboring segments; Fig. 1 B). There 
is a very satisfactory correlation, r a being 0.82 for the 
pooled data, and 0.69 and 0.95 for the 36-day and 3.5- 
year animals, respectively. Clearly, throughout the 
small intestine the biosynthesis of pre-pro-LPH and its 
derivatives is regulated by the level of  LPH-mRNA. 
Contrary to this, as already pointed out, the steady- 
state levels of  lactase activity along the small intestine 
do not parallel the levels of  LPH-mRNA (Fig. 1A, B 
and C). One or more post-translational events must 
therelbre be responsible for the decline of  laetase activ- 
ity in the proximal third (36-day animal) or two.thirds 
(3.5- year animal) of  the small intestine. 

What is (or are) these posttranslational event(s). A 
non-exhaustive list of  possibilities includes: (i) LPH 
might be degraded by luminal, pancreatic pretenses, a 
possibility already indicated in connection with the 
post-weaning decline of  lactase (see, for example, 
[34,35]). Indeed, pancreatic pretenses could be detected 
in the luminal contents of  these proximal segments of 
small intestine (not shown). (ii) LPH might be degraded 
by o.,-;e or  more enterocyte proteases, either of  lhe intra- 
cellular pathway or of the brush border membrane. (iii) 
Two or three closely related chromosomal LPFI genes 
occur in the rabbit (Brunschwiler, Villa, G.S. and N.M., 
in preparation). Possibly the gene(s) expressed in proxi- 
mal small intestine are not identical with those ex- 
pressed more distally. Subtle differences in messenger 

,~ u ~ , , ~ , , . a . v ,  assays, 
may lead to LPH enzymes of  different stability and/or 
different susceptibility to proteolysis and/or with differ- 
ent targeting. (iv) It may also be that in the proximal 

q / : / . / o - o .  I # e /  i . . . . .  • 

0 20 40 CO I~0 10o 120 0 100 2(;0 300 400 
I ~ ]  LPH  rnRNA p,~r  } q ]  I o l a l  RNA  ~ @1 mBNA pe r  I t g  lolal  RNA 

10. ~ .u 10 

1 2 3 4 5 6 7 8 1 2 3 b. 5 6 ? 8 

60~ 

40 -  "~ 40 

20- 

i 2 3 4 s ~ ? ~ l 2 3 4 s 6 7 

Fig. 4. Analysis of in vitro biosynthesis of LPH and $L 'Specific 
incorporation' (see Materials and Methods) into all forms ofLPH (A) 
and into pro-Sl (B) was plotted as a function of the cognate mRNA. 
Filled circles, 36-day; open circles, 3.5-year-old rabbit. "Specific incor- 
poration' (C and D) into various forms of LPH (black bars, pro-LPH; 
dotted bars, 185-190 kDa forms; shaded bars, mature LPH), as well 
as the percent of each form (E and F) was calculated for segments 1 
to 8 cf small intestine of 36-day (C and E) and 3.5-year-old (D and 

F) rabbit~. 

small intestine the migration of enterocytes along the 
villus proceeds thster, so that the mRNAs are not given 
enough time to synthesize as much LPH as in the middle 
of  the intestine. 

We conclude, therefore, that both the m R N A  levels 
and a post-translational mechanism determine the 
steady-state levels of  lactase along the small intestine of 
young and adult rabbits. We have already suggested 
two regulatory mechanisms to operate in the biosynthe- 
sis of  LPH in fetal small intestine [21]. 

A nuclear factor has been recently reported to inter- 
act with the promoter  of the pig LPH gene; this factor 
occurs in higher amounts in newborn than in adult pigs 
[361. 

As to the processing of  pro-LPH to LPH, we find no 
significant difference in the relative amounts of the 
major forms o f  LPH synthesized along the small intes. 
tine of  young or adult rabbits (Fig. 4E, F). This shows 
that the post-translational mechanism(s) responsible for 
converting pro-LPH to LPH + pro sequence is or are 
not identieal with those leading to the decline of  LPH 
in proximal small intestine (Fig. I A). 

A final comment  on the in vitro biosynthesis of  pro- 
suc:'ase-!soma!tase: it also correlated with the steady- 
state levels of  its cognate m R N A  along the small intes- 
tine (Fig. 4B), although less well than laetase with its 
mRNA. This is germane to what we have reported on 
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the site of control of sucrase-isomaltase biosynthesis in 
rive in fetal life (in man [37]) or during weaning (in 
rabbits [38]). As pointed out in a previous section, we 
unexpectedly find in addition a post-translational mech- 
anism that reduces sucrase activity in the proximal third 
of the small intestine (Fig. 1D, E and F). Whether this 
mechanism(s) is(are) identical with those leading to the 
decline of laetase remains to be seen. 

Acknowledgements: This work was partially supported by the Swis~ 
National Science Foundation, Berne. We thank Dr. Hans Waeker for 
kindly supplying anti-rabbit LPH antiserum. 

REFERENCES 

[1] Doell, R.G. and Kretehmer, N. (1962) Biochim. Biophys. Acta 
62, 353-362. 

[2] Toofanian, F. (1984) Laboratory Animal Science 34, 268-271. 
[3] Seba~tio, G., Villa, M., Sartorio, R., Guz.zetta, V., Poggi, V., 

Auricchio, S., Boll, W., Mantel, N. and Semenza, G. 0989) Am. 
J. Hlaln. Genetics 45,489-497, 

[4] Freund, J.-N., Duluc, 1. and Raul, F. (1989) FEBS Lett. 248, 
39- 42. 

[5] Freund, J.N., Duluc, I. and Raul, F. (1991) Gastroenterology 
100, 388-394. 

[6] Lae,:y, S.W., Naim, H.Y., Magness, R.R., Gething, M.-.I. and 
Sambrook, J. (1991) Gastroenterology 100, A223. 

[7] Btlller, H.A., Kothe, M.J.C., Goldman, D.A., Grubman, S.A., 
Sasak, W.V., Matsudaira, P.T., Montgomery, R.K. and Grand, 
R.J. (1990) J. Biol. Chem. 265, 6978-6983. 

[8] Lloyd, M., Mevis~en, G., Fischer, M., Olsen, W., Goodspced, D., 
Genini M., Boll, W., Semenza, G. and Mantel, N. (1992) J. Clin. 
Invest. 89, 524-529. 

[9] Eseher, J.C., Dekoning, N.D., Vanengen, C.G.L, Arora, S., 
Bullet, H.A., Montgomery, R.K. and Grand, R.J. (1992)J. Clin. 
Invest. 89, 480--483. 

[10] donas. M.M.. Montgomery, R.K. and Grand, R.J. (1985) Pediat- 
ric R¢~, 19, 956-962. 

[11] Quan, R., Santiago, N.A., Tsuboi, K.K. and Gray, G.M. (1990) 
J. Biol. Chem. 265, 15882-15888. 

[12] Castillo, R.O., Reisenauer, A.M., Kwong, L.K., Tsuboi, K.K., 
Quan, R. and Gray, G.M. (1990) J. Biol. Chem. 265, 15889- 
15893. 

[13] Mantel, N., Villa, M., Enzler, T., Wacker, H., Boll, W., James, 
P,, Hunziker, W. and Semenza, G. 0988) EMBO J. 7, 2705-2713. 

[14] Hunziker, W., Spiess, M., Semenza, G. and Lodish, H.F. 0986) 
Cell 46, 227-234. 

[15] Danielsen, E.M., Skovbjerg, H., Nor,2n, O. and Sj0strOm, H. 
(1984) Bioehen'L Biophys. Res. Comman. 122, 82-90. 

[16] Skovbjer8, 14., Danielsen, E.M., Nor~n, O. and Sj0strOm, H. 
(1984) Bioehim. Biophys. Aeta 789, 247-251. 

[17] Scmenza, G. (1986) Annu. Rev. Cell Biol. 2, 255-313. 
[18] Bradford, M.M. (1976) Anal. Bioehem. 72, 248-254. 
[19l Lowry, O.H, Ro~ebroagh, N.J., Farr, A.L. and Randall, RJ.  

(1951) J. Biol. Chem. 193, 265-275. 
[20] Peterzon, G.L. (1977) Anal. Biochem. 83, 346-356. 
[21] Villa, M., M~nard, D., Semenza, G. and Mantel, N. (1992) FEBS 

Lett. 301,202-206. 
[22] Almog, R.and Shirey, L. (1978)Anal. Biochem. 91, 130-137. 
[23] gunerth, W.H. and Young~, V.L. (1984) Cereal Chem. 61,344- 

347. 
[24] Shatkin, A.J. (1969) in: Fundamental Techniques in Virology 

(Habel, K. attd Salzmann, N.P. eds.) pp. 227-235, Academic 
Press, New York. 

[25] Auffray, C. and Roageon, F. (1980) Ear. J. Biochem. 107, 303- 
314. 

[26] Hegner, M., yon Ki¢ckgbus~h.Gr, ck, A., Falchetto, R., James, P., 
Semenz.a, G. and Mantel, N. (1992) .I. Biol. Chem. 267, 16928- 
16933. 

[271 Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular 
Cloning a Laboratory Manual, Cold Spring Harbor Laboratory 
Press, Cold Spring Harbor, NY. 

[28] Feinberg, A.P. and Vogelstein, B. (1983) Anal. Biochem. 132, 
6-13. 

[29] Browning, T.H and Trier, J.S. (1969) J. Clin. Invest. 48, 1423- 
1432. 

[30] Naim, H.Y., Sterchi, E.E. and Lentze, M.J. (1987) Bioehem. J. 
241,427-434. 

[31] Lottaz, D., Oberholzer, T., Semeaza, G,, Bahlcr, P. and Sterehi, 
E. (1992) FEBS l.¢tt, (in press). 

[32l Laemmli, U.K. (1970) Nature 227, 680-685. 
[33] Rossi, M., Maiari, L., gussomanno, C. and Aaricchio, S. (1992) 

FEBS Lett. (in press). 
[34] Alpers, D.H. and Tedeseo, F.J. (1975) Biochim. Biophys. Aeta 

401, 28~40. 
[35] Seetharam, B., Perrillo, R. and Alpers, D.H. (1980) Gastroen- 

terology 79, 827-832. 
[36] Troelsen, I.T., Olden, r., Nor6n, O. and Sj6qr6m, H. (1992) J. 

Biol. Chem. 267 (in press). 
[37] Sebastio, G., Hunziker. W., O'Neill, B., Male, C., Mimard, D., 

Aurieehio, S. and Semenza, G. (1987) Bioehem. Biophys. Res. 
Commun. 149, 830-839. 

[38] Sebastio. G., Hunziker, W., Ballabio, A., Auriechio, S. and Se- 
menza, G. (1986) FEBS Lett. 208, 460-464. 

269 


