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TGN38/41 is an integral membrane protein predominantly located in the trans Golgi network (TGN) of rat (NRK) cell~. We have u~ed a eDNA 
expression system to map the epitop~ re~ognised by a panel of antibodies raised to TGN38/41 as a preliminary step in the accurate identification 
of the region(s) of the molecule responsible for its correct intracellular location. These ~tudies haveeonfirmed the predicted topology of the molecule, 
and have identifl~.~ a region in the cytoplasmic domain which is immunologieally (and hence potentially funcz.ionally) ¢oia~,~rved between species. 

Trans Golgi network (TGN); NRK; Brefeldin A (BFA) 

1. INTRODUCTION 

The classical secretory pathway in higher eukaryotie 
cells involve~ the passage of newly synthesized proteins 
through a discrete set of intracellular compartments be- 
fore sorting and targeting to the appropriate destina- 
tion. An organelle which plays a major role in the latter 
stages of this process has been termed the trans-Golgi 
network (TGN) [1], and has been shown to be an organ- 
elle independent of the Golgi stack [2-4]. The TGN also 
plays a role in the endocytie pathway~ since certain 
receptors recycle between it and the cell surface [5]. 
Recent experinaents have demonstrated that the fungal 
metabolite brefeldin A (BFA) affects both the secretory 
and endocytic pathways of many higher eukaryotic 
cells, causing (i) the contents of the Golgi stacks to 
redistribute into the endoplasmie reticulum (ER), (it) 
the TGN to collapse upon the microtubule organising 
centre (MTOC), and (iii) endosomes to fuse with the 
TGN [2,4,6-13]. Several studies on the effects of BFA 
upon the TGN have relied upon antibodies to the pro- 
tein TGN38 [4,11,12]. TGN38 is an integral membrane 
protein predominantly localised to the TGN of normal 
rat kidney (NRK) ceils [14]. Isolation of eDNA clones 
encoding TGN38 identified a single long open reading 
frame which would specify a protein with a predicted 
molecular weight of 38 kDa [14]. Computer-assisted 
structural prediction analysis suggested that TGN38 
would have an extra-cytoplasmic N-terminal domain, a 
single trans-membrane domain, and a cytoplasmic 'tail' 
of 33 amino acids [14]. Expression of wild-type rat 
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TGN38 or TGN38 lacking the cytoplasmic "tail' dem- 
onstrated that either (i) overexpression of the wild type 
molecule or (it) deletion of the *tail' is sufficient to cause 
mis-localisation of the protein, leading to its appearance 
at the cell surface rather than in the TGN [14]. These 
data suggested (i) the existence of saturable machinery 
responsible for the correct localisation of TGN38 and 
(it) the presence of a localisation signal in the cytoplas- 
mic tail of TGN38. We have recently isolated eDNA 
clones encoding an isoform of TGN38 designated 
TGN41 [15]. Tile two isoforms are collectively referred 
to as TGN38/41. The only difference between cDNAs 
encoding TGN38 and those encoding TGN41 is an 
eight base pair change, including a five base pair inser- 
tion in TGN41, in the region of the eDNA encoding the 
cytoplasmic tail. This insertion leads to a shift of read- 
ing frame, an eztension of the "tail', and a change in 
sequence at the C-terminus of the protein. Antibodies 
specific to TGN41 demonstrated that it too is predom- 
inantly localised to the TGN. In the course of our stud- 
ies of TGN38 and TGN41 we~ and others, have raised 
a variety of antibodies to them. We have now used a 
eDNA expression system to map the epitopes reeogni- 
sed by these antibodies and have used antibodies affin- 
ity purified on epitope clones ill topological and immu- 
nolocalisation studies. Antibodies to defined epitopes 
will be of significant use in identifying regions of 
TGN38 and TGN41 involved in determining their faith- 
ful ilatraceilalar Iocatisation. 

2. MATERIALS AND METHODS 

2.1. Construction artd screening qF epitope libraries 
The adaptor cloning, strategy u.~d to construct tile epitope libraries 

h ~  been described in detail before [16.17]. The starting material for 
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library construction was a full-length cDNA clone encoding TGN41 
[I 5] in the plasmid vector pBs (Stratagene). 5/ag of this plasmid DN A 
was incubated with 10 ng DNAse I (Boehringer) at 20°C. A 'stop' 
Eppendorf tube was prepared containing 118,ttl TE (10 mM Trig, pH 
S.O, I mM EDTA), 2.~d 500 mM EDTA and 100;d buffered phenol. 
10/.tl aliquots of reaction mix were transferred to the 'stop' tube aRer 
0.5, 1, 2, 3.4 and 5 rain, vortexed and centrifuged prior to transferring 
the upper aqueous phases to new tubes. 10 :tl aliquots of each sample 
were then loaded on a 2% agarose gel containing ethidium bromide 
and subjected to eleetrophoresis. The 2 rain digestion time wa~ found 
to produce fragments in the size range 100-1,000 bp; this sample was 
used for further stages. The digested DNA was then subjected to 
chlorolbrm/isoamylaleohol extraction and ethanol precipitated. 

It is essential for adaptor ligation that the eDNA fragments have 
blunt ends; tbe~e were produced as described previously [16,17]. 
Adapted fragments were separated on a 2% low melting point agarose 
gel containing ethidium bromide. Gel slices in the ranges 100-200 bp, 
200--400 bp and 400-600 bp were excised under 369 nm light, diluted 
10-fold in TE, made to 50 mM NaCl and incubated at 65°C for 5 rain 
to meh the agarose. The tubes were cooled to 37°C and 10/.tl of 
kinased, adapted pGEX-3X (see below) added to each tube together 
with 0.1 vol. 10× ligase buffer (0.2 M HEPES. pH 7.6, 0.1 M MgCI2, 
0.1 M DTT, 6 nM ZATP) and 2/,d ligase (I unit/,ul, Boehringer). Tube~ 
were subsequently incubated for 2 b, at 37°C. Ligation products were 
used to transform E. coh' strain XL- 1 blue (Stratagene) by eleetropora- 
tion using a Bio-Rad Gone Pulser. 

Since several of the antisera to be epitopg mapped had been raised 
against/~'-galactosidase fusion proteins partially encoded by pUEX 
[18], a different vector was chosen to harbour the epitope libraries. 
They were constructed in the Baml-il site of the bacterial e×pression 
vector pGEX-3X (Pharmacia) whid~ allows expression of correctly 
inserted, in frame, eDNA fragments as glutathione-S.transferase ftt- 
.~ion proteins. Adapted pGEX-3X DNA was prepared following the 
procedure previously described for pEX1 DNA [17]. Fusion protein 
production was induced by growing colonies for 3 h an nitrocellnlose 
filters which had been impregnated with 1 mM isopropylthio-fl-o- 
galaeto~ide (IPTG) Sigma Chemical Company (Peele, Dorset, UK). 

2.2. Preparation of double-stranded cDNA template Jbr sequencing 
Plaslnid DNA from epitope clones was isolated using the Promega 

(Promega Corporation, Madison, USA) 'ma~ie mini prep' method 
following the manufacturer's protocol. 

2.3. Double-stranded sequencing of  epttope clones 
This was performed using the Sequenase Version 2.0 kit (United 

States Bioehemicals) and t~sS]dATP following the manufacturer's pro- 
taeol. 

2.4. lmmulogical techniques 
lmmunofluorescenee analysis and BFA treatment of cells [4], ira- 

manoblot analysis [19] and affinity purification of antisera [20] were 
perlbrmed as previously described. 

2.5. Antibodies attd cell lines used 
All the antibodies used are rabbit polyclonal antisera. Antisera 1 

and 4 have been described previously [14,15]. Antisera 2 and 3 were 
rai~ed in rabbits (New Zealand White) to a TGN41-fl-galactosidase 
fusion protein praduced by a pUEXI canstruet. Antiserum 2 was a 
generous gift from Dr. K. Howell, University of Colorado, USA; 
antiserum 3 was raised by A. Wilde in this laboratory. Antiserum 5 
was raised following immuuisation of rabbits (New Zealand White) 
with the peptide CKRSKVTRRPKASDYQRLNLKL conjugated to 
thyraBlabnlin via its amino terminal Cysteine residue and a sulfo- 
SMCC bifanctional cross-linker Sigma Chemical Company (Peele, 
Dorset, UK) using previously published procedures [21]. The peptide 
was synthe~ised within the SERC Molecular Recognition Centre. Uni- 
versity of Bristol. N RK [22], RF-I (primary human libroblast cell line 
generously provided by Dr. C. Paraskeva, University of Bristol), 
MDCK [23]. LLC-RK~ [24], and COS [25] cells were cultured as 
previously described [4], 

3. R E S U L T S  A N D  D I S C U S S I O N  

The  epi tope m a p p i n g  s t ra tegy employed  involves (i) 
subcloning r a n d o m ,  over lapping  f ragments  o f  app ro -  
priate e D N A  into a plasmid express ion vec tor  to create  
an epi tope  l ibrary,  (it) expression o f  the proteins  en- 
coded by those r a n d o m  f ragments  as  par t  o f  p lasmid 
encoded fusion proteins ,  (iii) immunosereen ing  o f  the 
expressed prote in  f ragments ,  (iv) isolat ion and  sequene- 
!ng o f  immune-pos i t ive  clones,  (v) a l ignment  o f  im- 
mune-pos i t ive  clones with the original  e D N A  sequence, 
(vi) identif ication o f  an  epi tope as the region o f  sequence 
shared by all c lones immune-pos i t ive  with a specific 
ant ibody.  The  identif ication o f  epi topes  can be fur ther  
refined by a l ignment  o f  the sequences  o f  imm u n e -n e g a -  
tive clones. This  p rocedure  has  been described previ- 
ously [16,17]. 

Three  epi tope  libraries were  cons t ruc ted ,  each ex- 
pressing a different  size range  o f  T G N 4 1  e D N A  frag-  
ments. The  size ranges,  100-200 base pairs, 200--400 
base pairs  and 400-600  base pairs  were used to eneor  ~- 
pa~s bo th  linear and  eon fo rma t iona l  epitopes.  The  three 
libraries were initially .~creened with a cocktai l  o f  five 
different ant ibodies ,  each o f  which recognises T G N 3 8  
and/or  T G N 4 1  (Table  I). A total  o f  230 immune .pos i -  
tive colonies were identified, p icked o n t o  'mas te r  plates '  
and,  in quintuple t ,  on to  fresh nitrocellulose filters for  
rescreening with each individual  an t ibody.  The  second-  
ary screen identified 88 individual  clones which were 
g rouped  acco rd ing  to  their immunolog ica l  reactivity, 
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Fig. 1. Diagram of TGN41 illustrating positions of epitol~ recog- 
nised by antisera 1-5. Numbers refer to amino acids in tile mature 
protein sequence of TGN41, N = amino terminus, C = carboxy 

terminus. 
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Fig. 2, lmmunofluoreseenee analysis of methanol-fixed NRK cells using antiserum 1 (panel A) or antiserum I affinity purifi~l on an epltope clone 
encoding amino acid residues 1-26 of the mature TGN41 protein (panel B). 

i.e. those recognised by specific antisera were placed in 
different Groups as were those recognised by different 
combinations of antisera. Many clones were positive 
with more than one antiserum, suggesting that some of 
the different antisera recognise the same or closely re- 
lated epitopes. 

A selection of clones from each group was then se- 
quenced and the sequences aligned with the eDNA se- 
quence ofTGN41. Epitope boundaries were defined by 
identification of overlapping eDNA sequences from 
groups of clones immunopositive for each individual 
antibody. These data revealed that each antiserum re- 
cognises specific epitopes (Table I and Fig. 1). Antisgra 
were affinity purified on clones expressing individual 
epitopes and used in immunofluorescence analysis of 
methanol-fixed NRK cells to confirm that antibodies 
recognising these epitopes still show the same pattern of 
staining as the initial polyclonal antiserum. All the af- 
finity purified antisera gave a typical Golgi staining 
pattern (Fig. 2). 

Table 1 
TON41 epltopes 

Anti,e- lmm unogen Epitope(s) 
rum recognised 

amino acids of 
mature TGN41 

1 TGN38-fl-galacto~idase 
fmion protein 1-13.69-74 

2 TGN41-fl-~alaeto~idase 
fusion protein 69-74 

3 TGN41-fl-galacto~idase 
fusion protein 69-74, 316-355 

4 Synthetic p~ptide 
CKRSKVTRRPKASDYQRLNLKL 320-338 

5 Synthetic peptide 
CKNI.VLPADLFPNQEK 359-363 

The published antiserum to TGN38 (1 in Table I and 
Fig. 1) was raised against a TGN38-fl-galactosidase fu- 
sion protein [14]. The sequences of  several epitope 
clones reeognised only by this antiserum express a re- 
gion corresponding to amino acids -6  to +26 of  
TGN41. This defined the epitope recognised by this 
antiserum as lying between amino acid residues 1 and 
26 of the mature protein. However the epitope was fur- 
ther refined by the antiserum's inability to recognise 
protein expressed by a clone which encodes a fragment 
of TGN41 beginning at amino acid 13 of  the mature 
protein. Therefore tile epitope within TGN38 and 
TGN41 recognised by this antibody lies within the first 
13 amino acid residues of the mature protein. This anti- 
serum is unique in recognising an epitope at the extreme 
amino terminus of the mature protein. However, it also 
detects a second epitope (centered around amino acids 
69-74 of  the mature protein) which is recognised by 
antisera 2 and 3 (Table I and Fig. 1). Antiserum 1, 
unlike antisera 2 and 3, is able to recognise TGN38/41 
at the cell surface (Reaves, B., Horn, M. and Bunting, 
G., submitted). This ability is presumably due to its 
unique ability to recognise the extreme amino-terminus 
of TGN38/41. The fact that antiserum 1 recognises an 
amino-terminal epitope, coupled with its ability to de- 
tect TGN38/41 at the cell surface, confirms the pre- 
dicted topology of TGN38/41 [14] as a type 1 integral 
membrane protein. 

An antiserum raised to a TGN41-fl-galactosidase fu- 
sion protein (3 in Table I and Fig. 1) recognises epitopes 
in both the lumenal and the cytoplasmic domains of 
TGN38 and TGN41. The cytoplasmic domain epitope 
it recognises encompasses that recognised by antiserum 
n " r ' g  a .~--:  . . . . . . . .  l , - . aA h , p  t l a l  , a n t l . p , ~ * p t i A o  nnti~erHm ~ .  • l i e  I~ , l l tO ld4 , .  l ~ , l * , O g l l i t O l ~ ,  u ~ '  b.i.AS ~A*  . . . . . . . . . . . . . .  

could not be refined further than the sequence of the 
peptide used as the immunogen. However this antibody 
revealed a property that was unique among the other 
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Fig. 3, lmmunofluoreseenee analysis of methanol-fixed human (RF-I) (panel A) and simian (COS) (panel B) calls using antiserum 4 as the primary 
antibody. 

antibodies raised to TGN38/41. It was found to have 
cross species reactivity (Fi~. 3). When used in im- 
munofluore~cence studies on human fibroblast (RF-1), 
canine (MDCK), lupine (LLC-RKj) and on simian 
(COS) cells a characteristic, juxtanuclear Golgi pattern 
of staining was observed. The conservation of this epi- 
tope may reflect a functional role for this region within 
the protein. 

Antiserum 5 had previously been shown to be specific 
for TGN41 [15] and on epitope mapping was found to 
recognise a very well defined epitope. One clone, which 
expresses only the terminal 5 amino acid residues of 
TGN41, was weakly recognised by this antiserum. 
However, it proved impossible to affinity purify anti- 
body on this epitope clone. This would suggest that the 
5 carboxy terminal amino acid residues represent only 
the core of the epitope and that for affinity purification 
purposes either (i) the whole of the epitope is required 
or (ii) the sequence prior to this region is required for 
the correct folding of the epitope. 
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