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A slow anion channel in guard cells, activating at large hyperpolarization, 
may be principal for stornatal closing 
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Slowly activating anion channel curr~.nts were di~covc~-ed at micromolar "cytoplasmic" Ca-"" during patch-clamp measurements on guard.cell 
protoptast~ of Viciafaba and Xanthimn strunlarium. They activated at 10otcntials as low as -200 mV, with time constants between 5 and 60 s. and 
no inactivation. The broad voltage dependence exhibited a current maximum near -40 mV. The single-channel open time was ia the order of 
secol~ds, and the unitary eonductanc0 was 33 ps, similar to that of the already described "quick' anion channel of guard cell~. Because of its activity 
at low potentials, the slow anion channel may be e~ential for the depolarization of the pla~malemma that is required for ~alt efflux daring stomatal 

eloping. 

Anion channeh Patch clamp; Stomatal closure: Voltage dependence 

1. I N T R O D U C T I O N  

Plants a t tempt  to minimize water  lo.~s with respect to 
carbon  uptake by opening their s t oma ta  primari ly dur-  
ing per iods favoring photosynthes is  and closing them 
when darkening sets in or water  stress develops. Sto- 
mata l  opening is caused by an accumula t ion  o f  salts o f  
K ~" in the guard cells and  an ensuing  increase in their 
volume. The basic inechanisms involved in the opening 
process appear  to  be better k n o w n  than those pr imary 
in the controlled loss o f  cations and  anions f rom the 
guard  cells dur ing closing. An ion  channels ,  available for 
efflux, were discovered in these cells; however they per- 
naitted passage o f  anion currents o f  sut'ficient magn i tude  
only  at  p lasmalemma potentials  positive to - 1 0 0  mV 
[1,2]. Fo r  salt loss to occiar, KS~,t channels  must  open in 
addi t ion;  they do so at  still higher potentials,  above - 4 0  
mY [3]. A depolarizat ion o f  the p lasmalemma above 
this threshold will be necessary to  bring abou t  s tomata l  
closure. Potentials in this range are above the equilib- 
r ium potential o f  K + (in guard cells of  wide open sto- 
m a t a  est imated to be as low as -120  mY). Auxil iary 
hypotheses,  like the opening o f  Ca -~ channels° were 
invoked to account  for the necessary collapse ol ~ mem- 
brane polar izat ion [2,4]. Now it seems tha t  a newly 
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discovered type of  anion channel  may  provide this key 
function.  Besides being active at  potentials as low as 
-200  inV, this channel differs from the anion channel  
described earlier [1,2] by slow activation kinetics. We 
shall refer to it as the "slow anion  channel '  {SLAC} of  
the guard-cell p lasmalemma,  in contrast  to the "quick 
an ion  chamael ~ (QUAC)  described before [I,2]. 

We used guard  cell protoplant~ of' }%in faba and 
Xcmthium strumarhan for our  investigation. V. jhba has 
been the species most  f requent ly used for patch-clamp 
measurements  on guard  cells, whereas much is known 
about  s tomata l  behavior  in whole leaves from studies 
with X. strumarium. We preferred to use X. strumarhon, 
and  we verified the results obta ined with material  f rom 
~: faba. 

2. M A T E R I A L S  A N D  M E T H O D S  

2.1. Plants arid proloplusl preparatfon 
Plants of Xallthiutn slrt,mariut~t L. were grown in a greenhouse, 

hydroponically in clay pebbles (Lecaton. 4-8 ram; nutrient ~olution: 
Flory 9 from Planta, Regea~taul', Germany, 1 g.i "t. ~ith aa addition 
oi"0.24 ..q.l -t ol'CaSO,). Natural llght wa~ ~upplementcd by light from 
metal vapor lamps (Osram Power Star HQI TS 250 or 409/D, 350 
/~mol.m-".z -j at the top of the plants). Flowgring was prevented by 
additional light for one hour in the middle of the night. Day/night 
temperatures were ~/18°C. The fourth leafabove the" cotyledons from 
four-week-old plants was u~ed. Plant.~ of Viciafaba L. were cultivated 
in the same environment, but in soil. 

Epidermal fra,~auentz were obtainc'd by stinting the leaves ~n at 
blender [5|. For the ~ubzeqaent enzymic digestion th~ epidem~al fats- 
meats were shaken at 20'C with an amplitude of 2 em and a frequency 
of 1.7 Hz for 2-3 h in I mM CaCI_~, i0 mM Na-a~orbate and contain- 
ing 0.02% J,u/v) P,,ctolyase Y-23 (Seishia Pharmaceutical, Tokyo, 
I . . . ~ ~ rV /~ '~  S , r , . . hw l l l , . l l i , & . d l~  • ~ I I ~  l ~  . . . nape,0, '~% . . . . .  ~-"..'--~ Onez.,I,-~ u-10 {Yakult Hon~ha. Tokyo. 
Japan), 2% (w/v) BSA, ,'r = 600 mosmol.kB-~ for X. strt#narilutl and 
a = 400 mozmol.~g -~ I~r I/. tuba, adjusted with sorbitol. 
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2.2. Patch.damp measurements [d] 
Volt'age pulses were ',-pplied and currents measured by an EPC-7 

patch clamp amplltaer (List-electronic, Darmstadt, Germany). The 
results were filtered b:¢ an eil~ht-pole Besael filter (Frequency Devices, 
Haverhill, Massachusetts+ USA), digitized by an ITC 16 interface 
(Instrutoch, ElmonI, NY, USA) and stored on hard disc (SY Quest 
Technolo~:¢, Fremont, CA, USA) b)' a Mega Atari ST4 (Atari, Sun- 
n:cvale, CA, USA) or alter digitization by a VR 10 i,lterfaee (In. 
~trutech) on video tape, Data were analysed by patch-clamp sol)ware 
from lnstrutech. 

Unless otherwise stated, solutions eontaineti Cs ÷ instead of K + to 
prevent concealment or the anion currents by currents of K ÷, (K" 
channels are virtually impermeable to Cs+.) 

All pipette solation~ for the whole-cell measurements were $ ttM 
with respect to free Ca=L adjusted with CaCI~ and HEDTA [7]. The 
osmolalities were 600 mosmol.kg -t of all media used with X. strunta. 
ritell and 400 mosmol.kg -1 for those For V. fabu, adjustment with 
sorbitol. Other components of the solutions are given in the figure 
legend~. 
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3. RESULTS 

3.1 Slow.anion-channel currents 
Evidence for the presence of slow anion channels ap- 

peared in whole-cell currents of guard.cell protoplasts 
o£ 7. faba and X. strumarium. Starting from holding 
potentials of - 160 mV ( I/. faba), and -220 or -200 mV 
(X. strumarhon), repetitive pulses of 90 s duration were 
applied in increments of 20 mV to cover the voltage 
range from -240 mV to +60 mV. Fig. 1 shows an exam- 
ple acquired with X. strumarium. Exponential functions 
were fitted to the activation curves; time constants+ r, 
were obtained and, by extrapolation to infinity, the 
steady-state currents. At -180 mV, the time constant 
was 5 s, and it increased with membrane potential, U,,,+ 
to 16 s at -20 mV. These values applied to cells charac- 
terized by CI--currents of about 40 pA at U,~ = -100 
inV. In cells exhibiting currents of twice thi~ magnitude, 
activations occurred even more slowly, and the time 
constant approached 1 rain. For comparison, the time 
constant for the quick-anion-channel current was 18 ms 
at U,, = -40 mV, where the current maximum was 
located. In some cases, it was necessary to fit a sum of 
two e-functions to the activation curves. For example, 
at U~, = -20 mV, three out of five examples listed had 
a faster component (r = 7 s, additional current of i2 
pAL The slow-anion-channel currents did not show 
signs of inactivation during the 90-s pulses, in contrast 
to the behavior of the quick-channel currents [2]. 

It proved virtually impossible to apply pulse pro- 
grams from holding potentials below -220 mY. The 
seals of the protoplasts became increasingly unstable 
upon each return to the holdin/~ potential. 

Current-voltage relationships were constructed from 
the extrapolated currents. Figure 2 shows a combina- 
tion of seven normalized examples. All individual 
curves intersect the abscissa at the equilibrium potentiai 
of CI- (+40 mV); the currents recorded prove to be 
carried by CI-. Therefore, the minima of the curves 
indicate maxim+t of anion efflux. These maxim~, were 
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Fig. 1. An example of the activation kinetics el'the slow-anion-channel 
current or a guard-cell protoplast of A'. strumarhan. Arter 60 ~ at a 
holding potential of -220 mV, pulses of 90 s duration were applied 
iq 20-mV steps, ranghlg froln -200 to -100 mV (top), al~d l'rom -50 
to -~60 mV (bottom, expanded time ~cale!). External solutions were 30 
mM CsCI, 1 mM CaCI:, 2 mM Mt~CI2, 10 mM MES; internal solutions 
were 150 mM CsCI, 5/~M free Ca 2+, 2 mM free Mg 2., 10 mM MgATP, 

10 mM HEDTA, 10 mM HEPES. 

situated between UL,, = --40 mV and -20 inV. The ap- 
pearance of CI- currents at large hyperpolarizations 
was remarkable. 

3.2. Quick-anion-channel currents 
Quickly activating anion channels were discovered in 

~uard cells of 7. faba [1,2]. Corresponding currents ap- 
peared also in X. strumarit¢m, when we applied voltage 
ramps to guard cells of both species. The curves inter- 
sected the abscissa at voltages slightly below the equilib- 
rium potential or Cl- (40 mV). In guard-cell protoplasts 
of V. faba, the maximum CI- current occurred between 
-42 and -45 inV. In 2(. strumarium it passed between 
-53 and -55 inV. 

3.3. Single-channel recordings 
Qufck anion channels. Activities of CI- channels with 

short open times were detected in guard-cell protoplasts 
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of  X. strumaritm~. These records resemble those pre- 
~ented for V. fa&t [1] and therefore are not shown. Even 
the unit:try conductance of 36 ps was similar to that of  
It. faba (39 ps). The mean open time was 2.9 ms at a 
potential of -90 ~nV and 4.1 ms at a potential of -70  
mV.  

Slow anion cllannels. In outside-out patches single 
chloride channel activities appeared. Open times were 
in the order of 1 s, and the single.channel conductance 
was 33 ps (Fig. 3A,B). The open probability of  the slow 
channels increased at less negative potentials, so that 
only i or 2 channels were closed at those voltages. Be- 
cause we could not determine with sufficient confidence 
the number of active channels in the outside-out 
patches, an accurate estimation of the mean open time 
was not possible. 

4. DISCUSSION 

The solutions in our patch pipettes were micromolar 
with respect to Ca ~'+, corresponding to a high level of 
cytoplasmic Ca -'+, Under this condition, activities of the 
slow anion channel (SLAC) appeared in the plas- 
malemma of  guard cells of V. Jbba and X. strumarhtt~l. 
They were characterized by large voltage- and current- 
dependent activation-time constants, r, of the whole- 
cell current, which extended from ~econds to a minute. 
The mean open time of the single slow channel was in 
the order of seconds. The "quick' anion channel 
(QUAC) in the same cell t),pe of  both species was explic- 
itly different, with • in the order of  20 ms and a mean 
open time of  3-4 ms. Both channel types contrasted also 
in their voltage dependencies, SLAC disphtying activity 
down to -200 m¥,  and very likely even lower, whil,~t 
QUAC was active above -100 inV. On the other hand° 
the coincidence of the anion current maxima between 
-60 and -20 rng as well as the similarity of the unitary 
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Fi~. 2, Cttrrent-voltage relationship of the slow.anion-channel ear- 
rent. Series of seven measurements (one example shown in Fig. 1). 
Currents obtained b)' e~trapolation to infinity of exponential tune- 
dons titled to the activation curves. Nonnaliz~d to currents at -20 
mV. The mean current at this potential was 83 + 46 pA, correspondin8 
to a current density of 12 HA era-:. E a -  = equilibrium potential of 

CI-. Same solutions as in Fig. 1. 

conductances of the two types of  anion channel were 
astonishing (SLAC 33 ps, QUAC 30 ps). One cannot 
suppress the notion that both channel types might be 
related to each other. The single-channel conductance 
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ffig. 3. Recording:~ of ~in~-d'J;:tnn~l uctiv~y arid curro,,nt-voh~gc relalion,~hip of sLow ~.,.'!.ion chmln¢ls in ~uard.cell proloplasts of X. strumaritvn. 
[A) Activity in an outside.out patda. At least four channels were active in [his patch (trace at -36 mY). Note that the duration of dle~e records 
was 2B 8. (B) Single-channel current-voltage relationship of the slow anion channel. External solutions were 30 mM KCi, 20 mM gaols, 2 mM 

MgCI2, l0 mM ME$; internal solutions were 150 ntM KCI, 2 mM MgCI,, 2 mM MgATP, 1 mM EGTA, 10 mM HEPES. 
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of  SLAC was certainly different from the one of  1 ps 
which Schroeder and Keller estimated to apply to a slow 
anion channel. They concluded on this channel from 
current records° called it 'S-type anion channel'  and 
hypothesized, in a recent article, it may be involved in 
stomatal closing [81. The information presented in [8] 
does not suffice to judge whether the S-type channels 
are identical with our SLAC or not. On the other hand 
we recognize manifestations of  SLAC in a report by 
Schroeder and l tagiwara [9]. We can demonstrate that 
the instantaneous activations of anion currents shown 
there (their Fig. 3) were in fact effects of  SLAC activa- 
tion which already had occurred at the holding potential 
o f  +48 mV; and the observed 'wash-out' would be a 
deactivation of  the SLAC currents in our interpretation. 
Similarly~ slow deactivations appearing in current re- 
cords of  abscisic acid-treated guard cells after a voltage 
jump from -55 to -150 mV [10] may also have been 
expressions of  SLAC. 

As to the likely function of SLAC, one has to consider 
the occurrence of  its activity at high "cytoplasmic' Ca a+ 
concentrations. As was explained in the Introduction, 
stomatal closing needs depolarization of  the plas- 
malemma from a potential below the diffusion potential 
o f  K + to one above, Stoppage or shorting o f  the H + 
pump alone will not suffice to accomplish this: anion 
efflux through the activated SLAC will be required to 
take Un, above the K* equilibrium potential. The follow- 
ing sequence of  events appears as a plausible one lead- 
ing to stomatal closing: in general° an initiating rise of 
Ca ̀ -+ occurs in the cytoplasm of guard cells, as summa- 
rized in [10] (but see also i l l  D. This causes activation 
o f  SLAC and blockage of  K?,~ channels, The result is a 
depolarization to voltages above -40  mV, at which si- 
multaneous efltux of  anions and cations can occur [1-3]. 

As to the role of the quick channels (QUAC),  their 
capacity to activate to very large conduetanees at a 
potential around -40  mV and to inactivate with a half- 
time o f  1~ s would allow rapid ion fluxes and stomatal 
responses and provide for fine control. SLAC did not 
show inactivation; it would assure sustained salt release. 

It will be necessary to determine the anion specificity 
of SLAC and the dependence o f  its activity on a sliding 
scale o f  intracellular Ca ~-÷ concentration. Responses to 
inhibitors will be used to recognize a possible relation- 
ship between Q U A C  and SLAC, 
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