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~'~C NMR studies of ~'~C-]abelled ligands bound to dihydrofolate reductase provide (DHFR) a powerful means of detecting and characterizing 
multiple bound conformations. Such studies of complexes of Escherichia coli DH FR with [4,7,ga,9J~C] - and [2,4a,6 -=~c]methotrexate (MTX) and 
[4,6,8a.~C]- and [2,4a,7,9-t'~C]folie acid confirm that in the binary complexes, MTX binds in two conformational forms and folate binds as a single 
conformation. Earlier studies on the corresponding complexes with Lactobacitlus easel DHFR indicated that, in this case, M I X  binds as a single 
conformation whereas folate binds in multiple conformational forms (both in its binary complex and ternary complex with NADP');  two of the 
bound ¢onformationaI states for the folate complexes arc very different from each other in that there is a 180 ° difference in their pteridine ring 
orientation. In contrast, the two different co=fformational states observed for MTX bound to E. coil DHFR do not show such a major difference 
;.n ring orientation and bind with NI protonated in both forms. The major difference appears to i=wolve the manner in which the 4-NH, group 
of MTX binds to the enzyme (although the same protein residues are probably involved in both interactions). Addition of either NADP* or NADPH 
to the E. coil DHFR-MTX complex results in a single set of ~C signals for bound methotrer.ate consistent with only one conformational form 

in the ternary complexes. 
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1. INTRODUCTION 

Dihydrofolate reductase (DHFR) (EC 1.5.1.3) cata- 
lyzes the NADPH-dependent  reduction of  7,8-dihydro- 
folate to 5,6,7,8-tetrahydrofolate [1]. The enzyme is of 
considerable pharmacological importance, being the 
target for antifolate drugs such as methotrexate (MTX, 
an anti-neoplastic agent) at~,d trimethoprim (an anti- 
bacterial drug). NMR studies of dihydrofolate reduc- 
tase from various sources have uncovered several exam- 
ples of multiconformational behaviour [2-10]. For  ex- 
ample, Falzone et al. [6] have used ~H N M R  measure- 
ments to show that Escherichfa coil D H F R  exists as two 
conformations in solution, both in its free form and also 
when complexed to methotrexate. Huang and co-work- 
ers [7] have characterized further the different confor- 
mations by the use of ~SN NMR spectra. By contrast, 
E. coli DHFR occurs o~ly as a single conformation in 
its complex with folate [7,11]. This behaviour differs 
from that observed for the corresponding complex 
formed with Lactobaciflus casei DHFR., which exists as 
a single conlbrmation in its MTX complex [12], but 
occurs in at least two conformations in its binary com- 
plex with folate and three conformations in the ternary 
complex with folate and NADP ÷ [4]. 
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It is important to understand the structural differ- 
ences in the various complexes which underlie the inter- 
species differences in their ability to form multiple con- 
formations. Such information could eventually assist in 
the design of more selective inhibitors. A convenient 
~nethod for studying such systems is to examine the ~3C 
NMR spectra of enzyme complexes formed with selec- 
tively ~3C-enriched ligands. Here we report on the taC 
NMR spectra of  complexes of [4,7,ga,9J~C]- and 
[2,4a,6J~C]MTX (scheme) and [4,6,8aj3C]- and 
[2,4a,7o9J~C]folic acid (scheme) formed with E. coli 
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D H F R ,  and  c o m p a r e  the  results with those  ob ta ined  
prev ious ly  for  the  co r r e spond ing  complexes  fo rmed 
with L. casei  D H F R  [12,13]. 

2. M A T E R I A L S  A N D  M E T H O D S  

The methods used to synthesize the t~C.labelled MTX have b~n 
reported [4]. [4,6,Sa-t'~C]- and [2,4a,7,9-~C]t'olic acid were made from 
[4,6,8a-~C]- and [2,4a,7,9-t~C]2,4-diamino-6-methylpteridine, respec- 
tively, using procedures to be described elsewhere [13]. NADP+ was 
obtained from Sigma Chemical Co, E, colt DHFR was a generous gift 
from Dr. J.F. Morrison: it was prepared using a strain of E. colt 
produced b2¢ mutagen~is of the DNA of the plasmid pJFM and 
purified using the methods described previously by Rood and Wil- 
liams [15]. 

The samples used for the NMR experiments were prepared by 
dissolvin8 lyophilized E. colt DHFR in 2H20 (IH experiments) or 10% 
'H.,O in H~.O (tiC experiments) containing approximately 1 equ. of 
ligand, to $ive 1.8 rnl of the final solution containing 0.5-0.7 mM 
DHFK, 100 or 500 mM potassium chloride and 50 or 100 mM potas- 
sium phosphate (the lower salt contents were used for experiments on 
the complexes with relates). Some ~amples were further dialyzed to 
remove excess ligand. Changes in pH were accomplished by making 
/~1 addition~ of "~HCI or HCI (0.1 M), or NaO=H or NaOH (0.1 M) and 
the pH was measured using a Radionaeter Model 28 pH meter. The 
pH values quoted are meter readings uncorrected for any deuterium 
isotope effects. Dioxan (0.1%) was used as a chemical shift reference 
(67.5 ppm from TMS at 298 K). 

Most of the ~C NME experiments were carried out at 100.4 MHz 
on a Braker AM400 spectrometer at 281 and 298 K: other experiments 
were performed using Braker AM f00 and Varian Unit~ 600 spectrom- 
eters. Composite pulse decoupling of protons was used in most of the 
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Fig. 1. tic NME spectra of the E. colt DHFR binary complex l'ormed 
with [4,7,Sa,9.z3C]methotrexate measured at different pH valuen. 
Spectra were obtained at 298 K and 125 MHz (C9 region not shown). 
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Fig. 2. ~C NMR spectra of complexes of/;~, colt DHFR formed with 
(a) [2,4a,6-L~C]methotrexate (pH 6.4, 100 MHz), (b) [2,4a,6- 
t~C]methotrexate and NADPH (pit 6.5, 150 MHz), (c) [2,4a,6. 
t~C]methotrexate and NADP" (pH 6.5, 100 MHz). Spectra were ob- 
tained at 298 K. f and b refer to signals of free and bound methotrex. 

ate, respectively. 

t3c NMR experiments [16]. The HMQC NOESY experiment was 
carried out on the Braker AMS00 using tile sequence proposed by 
Gronenborn and co-workers [17]. 

3. R E S U L T S  A N D  D I S C U S S I O N  

3.1. E. colt D H F R - M T X  co tnp lex  
The ~3C N M R  spect ra  for  the complexes  o f  D H F R  

with [4 ,7 ,8a ,gJ3c]-  and  [2~4a,6-t3C]MTX have  been  
m e a s u r e d  over  the  p H  range  5,0-7,2.  The  ass ignments  
o f  the ~3C N M R  spec t rum o f  free M T X  at p H  2.0 a n d  
6,5 have  a l ready b,~en r epor t ed  [12L and  t ransfer r ing  
these ass ignments  to those  o f  the b o u n d  ~)C signals in 
all the complexes  was relat ively s t r a igh t fo rward  because  
o f  the d is t r ibut ion  of" the  labels in the  two  ana logues  (see 
Tab le  I). In  the  ~3C spect ra  o f  the  b inary  complexes  
(show:~ in Figs.  1 znd  2z) there  is evidence for  two  
c o a t b r m a t i o n s  o f  the c o m p l e x  at all p H  values exam-  
tried, as was repor ted  previous ly  in the IH [6] and lSN 
N M R  studies [7]. F o r  example ,  in the ~3C N M R  spect ra  
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of  the binary complexes with [4,7,8a,9- ~3C]- and [2,4a,6- 
t3C]MTX shown in Figs. 1 and 2a, 'doublet" signals are 
seen for C4 (0.4 ppm), C7 (0.7 ppm), C6 (0.5 ppm) and 
C4a (0.3 ppm), whereas C2, CSa and C9 show very little 
or no 'splitting'. (Huang etal .  [7] reported a 2.2 ppm 
shift difference for N5 in the ~SN NMR spectra of the 
two forms.) The chemical shifts of the bound species do 
not change appreciably with pH, but the relative 
amounts of the two forms change; the two forms are 
equally present at pH 6.8 __. 0.3. This is a similar result 
to that reported by Huang etal. [7] in their ~SN studies, 
although they reported a somewhat lower pH value tbr 
the appearance of equal populations (pH 6). 

Huang etal .  [7] designated as Form I and Form II 
those forms which have, respectively, lower and higher 
populations at high pH, and we have followed their 
designation in assignir~g the two forms to their appro- 
priate bound 13C shifts (see Table I ) .  HMQC and 
HMQC NOESY experiments allowed us to connect the 
C7 carbon shifts to the corresponding H7 proton shifts: 
thus the high field H7 proton signal (reported in 
Falzon¢ et el. [6]) corresponds to Form I, the form 
favoured at low pH. Because we have analogues of 
MTX with all the pteridine ring carbons labelled with 
t3C it is possible to monitor interactions between the 
protein and various positions on the pteridine ring. For 
example, the l~C chemical shifts of C2 and CSa in the 
two bound forms indicate that N1 is protonated in both 
forms of the E. coil DHFR-MTX complex. Thus the 

bound 13C chemical shifts of C2 and C8a (see Table I) 
are seen zo be dose to the values for free MTX at low 
pH, which is protonated at NI (and very similar to the 
value found for bound C2 in MTX complexes with 
L. easel DHFR [13,18] where only one set of bound 13C 
signals is observed). The C2 carbons in both forms of 
the E. coli DHFR-MTX complex have an additional 
chemical shift contribution of 1.4 ppm over that for 
protonated free MTX: a similar additional shift contri- 
bution was seen in the t3C spectrum of the L. casei 
DHFR-MTX complex, and this indicates that the NI 
proton is binding in a similar manner in the different 
complexes. It seems likely that for the E. coli DHFR-  
MTX complexes in solution, the 2-NH_, group and the 
protonated N1 are directly interacting with the carbox- 
ylate group of Asp 27, as was found by X-ray analysis for 
the complex in the crystalline state [19]. This is in full 
agreement with the finding of Falzone ¢t al. [6], namely, 
that the MTX pteridine ring has the same general orien- 
tation in the two forms ()hat is, one of them is not 
turned over with respect to the other) and that the orien- 
tation is similar to that observed in the X-ray structure. 

The observed ~3C chemical shift differences between 
Forms I and II are not sufficiently large to indicate a 
difference in the structure of the pteridine ring in the 
two forms. The differences probably arise from differ- 
ent shielding interactions with the protein. Some contri- 
bution to the shielding differences could also arise from 
different interactions associated with conformational 

Table I 

t3C chemical shifts of methotrcxat¢ and relate, free and complexed with E. coil and L. easel DHFR' 

Complex Source C2 C4 C4a C6 C7 CSa C9 

DHFR-MTX E, coli (I) 158.1 165.3 122.3 152.3 150.7 146.1 57.2 
E, coil (II) 158.1 164.9 122,6 152.8 150.0 146.1 57.2 

DHFR-MTX L, easel 157.7 164.6 124,0 151.7 148.6 145.9 56.4 

Free MTX pH 2.1 156.7 164.1 123.2 152.8 150.2 145.7 56.0 

DHFR-MTX-NADPH E, carl 157.9 164.3 122.9 151.9 149.1 145.8 57.3 
DHFR-MTX-NADPH L. casei 157.7 124.2 150.8 147.7 57.3 

DHFR-MTX-NADP" F_,. coil 158.2 164.8 122.3 152.7 150.4 146.4 56.4 
DHFR-MTX-NADP* L, easel 157.9 164.6 123.3 151.7 146.6 146.9 55.1 

DHFR-folate E, coil 154.9 164.6 127.1 147.8 152.2 15~.0 46.1 

DHFR-folate L, casei (llb) 154.7 164.2 128.1 147.9 150.3 158.0 46.7 

Free relate pH 5.5 155.6 165.8 128.5 151.3 150.1 154.8 47.0 

DHFR-I'olata-NADP + E. cell 154.6 163,5 128.4 145.9 151.6 158.7 45.7 

DHFR-folate-NADP" L. camel (lib) 154.9 163,3 129.5 145.2 150.6 158.9 46.1 

"Folat~ spectra were recorded at 281 K and m¢thotrermt¢ spectra at 298 K. The chemical shifts listed arc for samples with a pH in the range 6-7; 
chemical shifts do not change by more than 0.2 ppm over the entire range ofpHs studied (see text). Chemical shifts are referenced to dioxan = 67.5 

ppm from TMS at 298 K and 67.3 ppm at 281 K. 
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differences involving the C6-C9 torsion angle between 
the two forms. 

Some general conclusions about the structure of  the 
two forms of  the E. coli D H F R - M T X  complex emerge 
from consideration of  the available data: 
(i) The 2-NHa group and the protonated N1 of MTX 
appear to bind similarly in the two forms: the similarity 
of  the C2 and C8a bound chemical shifts indicates that 
the protein interactions with this part o f  the pteridine 
ring are very similar in the two forms. 
(ii) The significant shift differences seen for C4, C4a, N5 
and C6 are consistent with the C4 region of the pteridine 
ring binding differently in the two forms. These differ- 
ent interactions could result if the pteridine ring pivots 
about the NI/C2 region such that it has a different tilt 
angle in the two forms, placing the C4 region in different 
environments. This could result from differences in the 
interactions between the 4-NH.~ group and the interact- 
ing residues on the protein (viz. the peptide carbonyl 
oxygens of  Ilc s and II¢ 94, which form hydrogen bonds 
with the hydrogens of  the 4-NH: group [19]). Such dif- 
ferent interactions would be consistent with the obser- 
vations of  Falzon¢ et el. [6] who observed multiple sig- 
nals for protor, s from IIc 5 and II¢ 94 residues in the IH 
spectrum of the: E. coil D H F R - M T X  complex, with 
small sh'ft differences between the signals from the two 
forms. These different interactions at the 4-NH2 group 
could change the overall position of the C4 region of  the 
pteridine ring without substantially perturbing the pro- 
tein interactions with the part of  the ring near C2 in the 
two tbrms. 
(iii) Falzone et al. [6] noted doubling of ~H signals in the 
apoenzyme for several residues, including Va193, Leu tl°, 
Tyr ~ and Leu ~ "-. All o f  these residues are near to either 
Ile ~ or Ile ~, the residues we have implicated in different 
modes of binding to the MTX 4.1,4Ha protons in the 
different forms. Thus the multiple conformations seen 
in the free enzyme appear to be maintained on forming 
the binary complex with MTX, and these could give rise 
to the different interactions with the 4-NH_, group as 
reflected by the t~C data. 
(iv) Falzone et al. [6] noted ~H shift differences between 
signals from Leu =~ and Leu ~ in the two forms of  the 
D H F R - M T X  complex: these results suggest that there 
is a difference in the orientation of the benzoyl ring in 
the two forms and this could contribute to the differ- 
ences in '~C shielding seen at C6 and C7 (for example, 
from different ring current shielding effects). 

3.2. E. coli DHFR-MTX-NADPI '[  and DHFR-MrTX "- 
NADP ÷ complexes 

The ternary enzyme complex formed with [2,4a,6- 
'~C]MTX and N A D P H  at pH 6.5 and 7.2 shows only 
one set  o f  laC ~ ' - -  ~ voLLn~ i'~ L~ (see , ~ u t ~  =,s-a,s for the ~" "" "~ ~"'~ , , t u , ,  I 
and Fig. 2b), indicating that only one form of this ter- 
nary complex can be detected. This agrees with the 
findings of Falzone et el. [6] who showed that the IH 

C2 C7 

C7 C4a 

C2 C7 C~la 

C7 

C2 ' ' C4a 

~7o lao i~o 14o i~o ~'~o 

~SC pprn 

Fig. 3. lsC NMR spectra of complexes formed with [2,4a,7,9-~sC]folic 
acid and (a) E. coil DHFR (pH 7.5), (b) L eta'el DHFR (pH 7.0), (c) 
IF.. coil DHFR and NADP* (pH 7.4) and (d) L. caaei DHFR and 
NADW (pH 7.3). Spectra were obtained at 298 K and 100 MHz (C9 

region not shown). 

spectrum of the D H F R - N A D P H - M T X  complex has 
no doubling of  signals and points to a single ¢onforma- 
tional form. 

The '3C spectra of  the ternary complexes formed with 
NADP + and the two labelled MTXs at pH 4.8-7.2 do 
not show any resolved splittings for the carbons of  the 
bound MTXs (see Fig. 2c), but the signals are broader 
than those observed in the ternary eomple~ with 
NADPH.  These line broadenings do not change with 
temperature and are thus unrelated to exchange proc- 
esses. 

3.3. E. coli DHFR-folate complex 
The ~3C spectra of the E. coli D H F R  binary com- 

p!exes ,,,i *~, [4,6,8a-13C] o-'d r9 4° 7 9 -lsc'lr^l~,° h . . . .  
been examined. In each case only a single set of  laC 
signals for bound folate was observed (Table I, see Fig. 
3a). This indicates the presence of  a single conformation 
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in these complexes in solution, in agreement with the 
recent JH and lSN N M R  studies of  Falzone et el. [11] 
and Huang et al, [7]. The ~aC chemical shifts o f  bound  
relate do not  vary over the pH range 5,0-7.5. It is 
interesting that  f'olate, which binds less tightly to  D H F R  
than does MTX,  selects out  a single conformational  
form upon complexing with the E, coli enzyme, whereas 
M T X  binds in two forms with comparable binding en- 
ergy (see above). This behaviour contrasts with that  
which we observed earlier for the corresponding com- 
plexes formed with the L. casei enzyme where folate 
binds in at least two forms (see multiple bound signals 
in Fig. 3b) [13,21], while M T X  binds in a single confor-  
mat ion [12,13]. 

3.4. E. coil DHFR-foIate-NADP + complex 
We have also studied the ~aC spectrum of  the E. cob 

D H F R  complex with NADP* and with either [4,6,ga- 
t~C]- or [2,4a,7,9-~3C]folate. In each case a single set of  
t3C signals for  bound relate was observed (Table I, Fig. 
3c). A single ~SN signal was earlier observed for the 
corresponding complex with [5-1~N]folate [7]. Thus, in 
solution relate binds in the presence of N A D P  ÷ to 
E. coli D H F R  in a single eonformational  form. 

The 13C chemical shifts o f  bound relate in the N A D P  + 
ternary complex with E. coil D H F R  do not vary over 
the pH range 5.4--7.5, and are similar to those o f  the 
binary complex (Table I). These :~"C chemical shifts of  
bound relate also resemble those measured for free relic 
acid at pH 5.5 (Table I), which is known to exist in the 
4-keto form and with N1 not  pl 'otonated [20]. It is likely 
that a similar structure is adopted by the pteridine ring 
in bound folate. 

In our earlier work on folate binding to L. casei 
D H F R ,  the existence of  multiple forms of  the ternary 
NADP* complex was demonstrated;  two o f  the forms 
have 180 ° differences in pteridine ring orientations, as 
shown by N e E  experiments [4,13]. The 13C chemical 
shifts o f  the pteridine ring in one o f  these forms, F o r m  
IIb, are similar to those measured in the present work  
for the corresponding £. coli D H F R  complex (Table I, 
see Fig. 3d, vs. c), suggesting a similarity in pteridine 
structure and orientation. In contrast,  other  forms o f  
the ternary L. casei D H F R  complex give rise to L~C 
chemical shifts which are very different (data not  give r~ 
here) reflecting differences in pteridine structure and 
orientation [13]. 

The inter-species differences in the ability to form 
multiple confomaations,  as shown by D H F R  complexes 
with inhibitors and with substrates will be further ex- 
plored using other t3C-enriched ligands. 
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