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The acid-alkaline transition in ferric myoglobin of the mollusc, Dotabella auricularia, exerts the ¢hang~.~ in both the coordination and spin states 
of the heme iron. Slower transition rate, compared to the N MR time scale, in this myo~lobin allowed the observation of separate signals arising 
from the two forms, and pH titration yielded a pK value of 7.8. h H-NMR ~aturation transfer experiments have ~-en successfully used not only 
to provide the first signal assignments for the heme methyl proton r~onan~s  of the Met-hydroxyl form of the myoglobin, but also to determine 

the kinetics of the transition. 
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1. INTRODUCTION 

The acid-alkaline transition of  ferric hemoproteins 
has been o f  particular interest because of  the fact that 
it reflects characteristics of  their active sites [1-7]. The 
rapid acid-alkaline transition rate for ferric myoglobin 
(metMb) of  horse [4] and sperm whale [5] has been 
interpreted in terms of  the ionization process of  the 
distal His imidazole. On the other hand~ the molecular 
mechanism of the relatively slow rate in the sea hare, 
Aplysia ltmacina [8,9], or the shark, Galeorhinus japoni. 
cus [10], Mbs which possess the distal Val and Gin 
residues, respectively, are not fully understood at pres. 
ent. Detailed characterization of  the acid-alkaline tran- 
sition for these Mbs are expected to provide chemical 
environments around their ligand binding sites. The 
thermodynamics of  the acid-alkaline transition can be 
obtained by optical spectroscopy [1,2], ESR [3], N M R  
[4,5] and magnetic susceptibility measurements [1]. Only 
the temperature-jump method [8] and NMR line width 
analysis [5] have provided some kinetics of the reaction. 

Dolabella auricularia is a common mollusc found on 
the Japanese coast and its Mb possesses the distal Val 
residue with an amino acid sequence similar to that o f  
Aplyaia Mb [11]. Here we report on the results of  satu- 
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ration transfer N M R  experiments [12,13] of  Dolabeila 
auricularia metMb which not only allow quantitative 
determination of the acid-alkaline transition rate of  this 
Mb, but also provide the first signal assignment o f  the 
heine methyl proton resonances o f  the Met-hydroxyl 
form of  Mb (metMbOH). 

2. MATERIALS AND METHODS 

Dolabella aurieularia Mb was extmctexi from its triturative stomach 
and purified according to the method previously descrilx'd [Il]. Mb 
was oxidized by the addition of a 5-fold molar excess of potassium 
ferricyanide (Sigma). metMb was ~parated from the residual reagents 
with a Sephadex G-50 (Sigma) column gquilibr, ated with l0 mM Bis- 
Tris buffer (Sigma) pH 6.8. Mb solution was concentrated to - l  toni 
and then the solvent was exchanged to :H:O in an Amicon ultraliltra- 
tion cell. The p"H of the sample was adjusted using 0.'~ M NaO~'H or 
:HCi and the la~'H was mcasun,-d using a Toko model TP-10 pH meter 
with u Toko typ~ CEI03C electrode. The isotope effect was not con- 
sidered to correct the p-'H value. 

~H-NMR spectra were recorded using a JEOL GSX-500 Fourier- 
transformed IqMR spectrometer operating at a ~H frequency of 500 
MHz. A typical s~'ctrum consisted of 3000 transients with 8k data 
points over a 60 kH~" band width, and a 6.3,us 90* pulse. The residual 
water resonance was suppressed with 50 ms presaturation docoupler 
pulse. Selective spin-lattice relaxation time (T~) was measured truing 
the saturation-recovery method with a selective saturation pul~. ,Sat- 
uration transfer experiments were carried out by ~le.etivdy saturating 
a desired peak for a variety of time and the steady-state value of the 
saturation transfer factor (1/Io; I and la are the sigtml inteasiti~ of a 
peak A without and with the saturation ofa l~"ak B which i~ connoted 
to peak A by dynamic process, respectively) was achieved for a satu- 
ration time ~-50 ms. The spectra r~ulting from the saturation tranffer 
experiments are presented in the form of dilTerence spectrum. The 
saturation factor was calculated by integrating the area of peak. The 
signal-to-noise of the spectra was improved lay apoaization which 
intmdu~'d 50 Flz line broadening. The chemical shifts are given rela- 
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tire to sodium 2,2-dilnethyl-2-silapentane-5-sulfonate with the resid- 
ual H:HO as internal reference. 

3. RESULTS 

The pH dependence of  the downfield hyperfine 
shifted portion of the 500 MHz IH-NMR spectrum of  
Dolabella metMb at 30oc is shown in Fig. 1. At pH 
7.14, heine methyl proton signals, peaks A-D,  and sin- 
gle proton signals, peaks a-g, are observed. The line- 
width ( -200  Hz) of the heme methyl proton resonance 
of Dolabella metMb is much smaller than that of  well- 
characterized sperm whale metMb and is comparable to 
that of Aplysia metMb [9]. Peaks indicated by * and 
those at 25--40 ppm exhibit less than a single proton 
intensity and the latter disappear at acidic pH. The 
spectral pattern of Dolabella metMb at acidic pH is 
quite similar to that of  the acidic form of Aplysia 
metMb [9]. Therefore the heme methyl proton reso- 
nances of  Dolabella metMb may be assigned as A(8- 
CH3), B(5-CH~), C(3-CH3), and D(1-CH3) and then 
peaks labeled by * are attributed to the reversely ori- 
ented heine arising from the heme orientational disorder 
[14], based on the signal assignments tbr Aplysia metMb 
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Fig, 1, Downf ie ld  h)'pcrfine shil'ted por t ion  of  the 500 M H z  J H - N M R  
spectrum of Dolabella metMb in 2H.O at 30=0 and the indicated pH, 
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Fig. 2. Saturation-transfer difference spectra of Dolabelta metMb in 
aH.,O at 350C and pH 6,9. (A) Reference spectrum. (B) Saturation of 
the heine 8-CI-I.~ signal exhibits the saturation transfer factor to peak 
B'. (C) Saturation of the heine 5-CH~ signal exhibits the saturation 
transfer factor to peak A', (D) Saturation of the heme 3-CH3 signal 
exhibits the saturation transfer factor to peak C', (E) Saturation of th~ 
heme I-CH.~ signal enhibits the saturation transfer t:aetor to peak D', 

[9]. If we assume that the signal at 60 ppm arises from 
the heine methyl proton of  the reversely oriented heme, 
Dolabelta metMb exhibits --- 15% reversed heine orienta- 
tion. Upon raising the pH, peaks at 25--40 ppm gain 
intensity at the expense of peaks A-D and a-g. The 
spectral pattern at this chemical shift region is similar 
to that of  metMbOH. From their signal intensities, 
peaks labeled A ' -D '  in the trace of pH 8.67 are attri- 
buted to the heme methyl proton resonances tbr Dola- 
bella metMbOH. Analysis of the signal intensity of the 
heme methyl proton resonances for both acidic and 
alkaline forms yielded a pK value of 7.8 for the acid- 
alkaline transition. This pK value is similar to that re- 
ported for Aplysia metMb [8,9]. Furthermore, the fact 
that both forms of  metMb exhibit separate signals indi- 
cates that the transition rate is slow compared to the 
NMR time scale. A slow transition rate of  Dolabella 
metMb is also similar to that of  Aplysia metMb. The 
line width of the heine methyl resonances lbr the acidic 
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Fig. 3. (A) The r~:overy of  the heine 3-CH.~ sil~aal of Dolabetfa met M b in -~H,O at 35°C and pH 6.5, after selextiv¢ saturation. (B) Plot of  signal 
intensity vs. the recovery time. T~ ~ of 3.3 4_- 0.3 ms was obtained. 

form ofDolabella metMb at pH 8.67 is larger by -35% 
relative to that at pH 7.14 due to exchange broadening. 

The heine methyl proton resonances of Dolabella 
metMbOH were assigned with the aid of  saturation 
transfer experiments. Saturation transfer experiments 
are useful to relate resonances which are connected by 
dynamic exchange processes with a suitable time scale 
[12]. The difference spectra resulting from the satura- 
tion transfer experiments at 35~C, pH 6.9, are shown in 
Fig. 2. The saturation of  the heine 8-CH3 signal led to 
partial saturation of peak B' (trace B). The traces C-E  
exhibited saturation transfer connectivlties between the 
heme 5-CH3 signal and peak A' (trace C), between the 
heine 3-CH~ signal and peak C' (trace D), and between 
the heine I-CHa signal and peak D' (trace E). These 
results indicate that peaks A ' -D '  are assigned to heine 
5-, 8-, 3- and 1-CHa proton resonances of  Dolabella 
metMbOH, respectively. 

The analysis of  the saturation transfer factor, to- 
gether with the selective spin-lattice relaxation time (T~ '~), 
allows for the determination of the acid-alkaline transi- 
tion rate. The spectra recorded at the elapsed time 
after the selective saturation of  the 3-CH3 signal (peak 
C) of Dolabella metMb at 35°C, pH 6.5, are illustrated 
in Fig. 3A. The plot of signal intensity against the recov- 
ery time, shown in Fig. 3B, yielded T~ j of 3.3 + 0.3 ms 
and this value is comparable to those previously re- 
ported for other Mbs [10]. The absence of metMbOH 
at this pH ensures that this ~ value is free from the 
effects of  the acid-alkaline transition. The saturation of 
the heine 3-CH3 signal of metMbOH (peak C') for 50 
ms yielded the saturation transfer factor (I/Io) of  0.52 to 
peak C at 35°C, pH 6.9. The rate, kaA, for the reaction, 
alkaline form --~ acidic form, is calculated as, 

k .A  = (IT'~ ')-~CI-I/Io)I(I/Xo). 

Substitution of 3.3 + 0.3 ms and 0.52 for T~t ~ and I/Io 
yielded a value of 280 _+ 30 s -~ for kaA. This rate is close 
to the value determined for Aplysia metMb using the 
temperature-jump method [8]. The rate, KAa, for the 
reaction° acidic form --¢ alkaline form, was calculated 
to be 1.3(_+ 0.14) x 1 0  7 M - l  • s - I  from the equilibrium 
population of  the two forms ([metMb]/[metMbOH] = 
0.15), pH and KaA. 

4. DISCUSSION 

X-ray study [15] has revealed that Aplysia metMb 
possesses penta-coordinated heme iron in its active site. 
It has been shown that the heme meso-proton resonance 
can be used as a marker signal for identifying the coor- 
dination number of the hem¢ iron in mgtMb [9,16]. The 
resemblance in the spectral features between Aplysia 
and Dolabella metMbs, together with the observation of 
the marker heine meso-proton signal at -,-25 ppm (re- 
sults not  shown) and the slower acid-alkaline transition 
rate, strongly suggests the absence of  the Fe-bound 
water molecule in Dolab¢lla metMb. Hence, the acid- 
alkaline transition of  Dolabella metMb can be written 
as  

/CAn 
metMb + OH- ~ metMbOH. 

kuA 
Sin~ the pK of  the above reaction for Dolabella metMb 
is close to that lbr Aplysia metMb [8], an identical 
amino acid residue between the two metMbs is likely to 
be involved in this transition. 
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The saturation transfer experiments enabled the de- 
termination of the kinetics of  the reaction. The values 
of 1.3(_+ 0.14) × 107 M -1 ' s -I and 280 _+ 30 s -l for kaa 
and kaa, respectively, are roughly comparable to the 
dissociation and association rates for the reaction be- 
tween external ligand and penta-eoordinated heine in 
Mb [17,18]. These results indicate that the transition 
from metMb to metMbOH involves the insertion of  
OH- to the heine active site followed by the binding of  
OH- to the penta-coordinated heme iron. Hence the 
acid-alkaline transition of these metMbs may be con- 
sidered as a model for the oxygenation process of Mb. 

Saturation transfer eonneetivities provided the first 
assignment of the heme methyl proton resonances o f  
Dolabella metMbOH. Although the methyl proton reso- 
nances of  metMbOH exhibit comparable shifts to those 
for ferric low-spin complexes of which the heine methyl 
proton hyperfine shift pattern is primarily interpreted 
in terms oi" ~r-spin delocalization, the shift pattern, 1- < 
3- < 8- < 5-CHa, strongly suggests a predominant a-spin 
deloealization in this complex. The small spread of the 
heme methyl proton hyperfine shifts ( - 1 2  ppm) indi- 
cates its small rhombic magnetic anisotropy [19]. 

It has been shown that the quantitative kinetic data 
for the acid-alkaline transition of  Dolabella metMb can 
be obtained by ~H-NMR saturation transfer experi- 
ments. Detailed understanding of the acid-alkaline 
transition in this Mb should provide important infor- 
mation about molecular mechanism for ligand binding 
process of" Mb. Careful scrutiny of the acid-alkaline 
transition in this metMb as well as other metMbs using 
similar techniques is in progress in our laboratory. 
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