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Optieal deteetion of magnetic resonunce (ODMR) and phospharescence spectroscopy have been applied to synthetic peptides derived from the

a-subuinit of the nicotinic acetyleholine receptor of Tarpeddo californice and their complexcs with a-<obratoxin (CBTX). The CBTX Trp phosphores-

eence Is strongly quenched by the proaimal disulfide linkage, while the emission wavelengihs und ODMR frequencics of the 18-mer al81-168

indicate & more hydrophobic Trp environment than in the 12.mer @185-196. Binding to CBTX produces a subtle increasc In the hydrophobicity

of the Trp environment for the peplides, in qualitstive agreement with a recently proposed binding medel, in which a rexeptor Trp residue interacts
strongly with u hydraphabie elefl of the toxin,

Phosphoreseence: ODMR spectrascopy: Neurotoxin-ucctyleholine receptor interastion

1. INTRCBUCTION

The nicotinic acetylcholine receptor (AChR) is a su-
pramolecular array of 5 protein subunits, ot stoichiom-
etry a.8yd. which plays a key rote in muscular contrac-
tion by controlling transmembrane ion currents [l1].
Snake venom neurotuxins such as a-bungarotoxin
(BGTX), a-cobratoxin (CBTX), and erabutoxin inhibit
neuromuscular transmission by binding competitively
with the agonist acetylcholine [1] to the a-subunit. Re-
cent studies have shown that synthetic peptide frag-
ments which reproduce sequences from the @-subunit
retain strong binding for the toxins [2-4]. In particular,
studies have established the binding of e-bungarotoxin
by the «173-204 fragment fromn Torpedo californica [2),
and the BGTX binding of the shorter fragment @185~
196 from Torpedo [3]. More recently, the binding of the
peptide «179-191 from calf and human AChR to
CBTX and to erabutoxin were studied [4] by fluores-
cence methods. These studies with synthetic peptides in
principle make possible a detailed characterization of
the role of particular residues in the binding process.

Based on computer graphics and physical model
studies, a model for the binding of toxins to the alpha
subunit of the AChR has been proposed [5.6], in which
a specific tryptophan residue (Trp-187 or Trp-184) from
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the a-subunit is pictured as being inserted into a hydro-
phobic cleft in the toxin, a structural feature common
to several long chain and short chain toxins. The possi-
bility of direct hydrophobic interactions of the single
Trp residue of the toxin with the above mentioned re-
ceptor Trp residues has also been proposed [5]). Recent
fluorescence investigations of calf and human 2179-181
peptide binding to CBTX and erabutoxin [4] have pro-
vided support for this model.

In the present work, we use triplet state optically
detected magnetic resenance (ODMR) to study the
binding to CBTX of two synthetic Terpedo sequence
peptides ¢185-196 and @181~198, which include respec-
tively, one or both of the aforementioned Trp residues
at positions 184 and 187, which have been suggested as
interacting with a hydrophobic toxin cleft. ODMR has
been shown to be a useful probe of the microenviron-
ment of Trp residues in proteins and peptides [7,8). In
particular, the phosphorescence wavelengths and fre-
quencies of zero field splitting parameters, which arise
from the dipole~dipole interaction of the two unpaired
electron spins in the triplet state, have been shown to be
sensitive to the hydrophobic vs. solvent exposed nature
of the environment [9,10] and to aromatic stacking in-
teractions [11,12]. In the present report, we characterize
the Trp environments in the toxin and peptides by
ODMR and phosphorescence decay measurements. We
do find evidence for a small increase in the hydrophobic
character of the environment of the peptide Trp residues
upon CBTX binding, particularly in the case of the
dodecamer. There is no evidence, however, {or direct
stacking with an aromatic residue.
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2. EXPERIMENTAL

CBTX wus abtained from the Miumi Serpentarium, Sult Luke City,
UT, while the @185-196 dodecumer und ai8i~198 18mer were syn-
thesized at the Protein Synthesiz Fucility, Yale University School af
Medicine, New Huven, CT. The camplexes were prepared by dissalv-
ing the peplide and toxin in a 1:1 molar rtio in § mM phosphate
builer, pH 7.4 as previously described for 2-bungarotaxin {13).

The upparatus and procedures for ODMR and phasphorescence
decay measurements have been deseribed previously {14), To uecount
for errors in ODMR peak frequencies which might urise from the
delayed response of the Trp phosphores¢ence ta microwuve irradiu.
tion, we carried out sweeps in bolh directions (toward increasing and
decreasing frequencics) and report in Table | the avarage peak posilion
observed for the two setx of sweeps. In the phosphorescence deciy
determinations, a sum of three decuying exponentials plus u buscline
was least squares it to the duta by the program RINFLT (OLIS, Ine..
Bogast. GA).

3. RESULTS AND DISCUSSION

3.1, a-Cobratoxin

The phosphorescence of the single Trp-25 of CBTX
(Fig. 1) is less well resolved than that of the dodecamer,
or than that typically observed {rom Trp containing
peptides and proteins [7.8]. The triplet properties of this
residue are anomalous in other respects as well. While
the phosphorescence (0.0} wavelength of 411.6 i falls
in the 410-415 nm range typically shown by Trp resi-
dues in hydrophobic regions, the 2E resonance fre-
quency at 2.47 GHz is significantly lower than the range
above 2.55 GHz which usuglly characterizes this class
of residues [9). Moreover, the usually strong D-E reso-
nance is not abserved with our broadband (Hg arc lamp
plus Corning 7-54 filter) optical excitation. Further-
more, the phosphorescence decay shows two compo-
nents (45% of total initial amplitude) with lifetimes sig-
nificantly shorter than the normal 5.5-6.5 s lifetime
range typically observed for Trp in proteins [185)].

It is quite likely that the short lifetime components
result from triplet quenching by the Cys-26-Cys-30 di-
sulfide bridge, which is nearly in van der Waals contact
with Trp-25 in CBTX [16]. From model studies [17] and
studies with disulfide containing protcins [18], it is
known that disulfide is an efficient quencher of Trp
exciled states, most likely by electron transfer processes.
Moreover the red-shifted phosphorescence of this Trp
might also be attributable to the proximity of the polar-
izable disulfide linkage. rather than to a generalized
hydrophobic environment. The crystal structure of
CBTX [16] shows that the toxin does not possess a true
hydrophobic core, and that the Trp-25 residue is not
part of a hydrophobic demain. On the other hand, elec-
trostatic interactions of polarizable disulfide linkages
with aromatic side chains in proteins have been cited as
an important factor in their conformational stability
[19].

The interactions with disulfide can also be used to
rationalize the broadness of the CBTX Trp phosphores-
cence and the distribution of lifetimes seen. It hus been
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Fig. 1. Phosphoreseence of CBTX, 12-mer and CBTX-12-mer com-
plex at 1.7 K.

shown by model studies [17] that the Trp-disulfide inter-
action fulls off rapidly with increasing distance; a
change of 0.03-0.04 nm in this distance can cause a
factor of two change in the Trp triplet decay rate {18].
Mareover, NMR studies of CBTX [20] have shown that
the resonances of Trp-25 are very sensitive to tempera-
ture, and have provided evidence for two conforma-
tional ensembles in the range of 4-88°C: this work has
suggesied that Trp-25 resides in & conformationally
‘mobile’ region [20]. Thus it is likely that a distribution
of conformations may exist in the ¢ryogenic solvent,
giving rise to a spread in Trp-disulfide distances, which
in turn causes the spread in phosphorescence lifetimes
observed, the poorly resolved phosphorescence and the
lack of D=E resonance. When narrower band optical
excitation is used, the D-E transition can be seen, and
its resonance frequency depends on excitation wave-
length [21].

3.2, Receptor peptides and camplexes with CBTX

The «185-196 dodecamer, which contains a single
Trp at position 187, shows a much better resolved phos-
phorescence spectrum than the toxin (Fig. 1), with a
(0,0) at 409 nm and a D-E ODMR frequency of 1.73
GHz (Fig. 2a), which falls within the range of 4, =
405-409 nim and D-E = 1.7-1.8 GHz usually associated
with solvent-exposed tryptephan residues [9], The phos-
phorescence decay profile is dominated (86%) by a long
lifetime (6.10 s) component, which falls in the range
typical of Trp residues in proteins. The 14% short-lived
contribution might be attributed to the close proximity
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Fig. 2. ODMR spectra of (4) 1 2-mer, D-E transition, (b) 18-mer, D-E

transition. () 12.mer, 2E transition, and (d) 1 2:mer-CBTX complex.

2E transition, Solid and dashed traces denote forward and backward

micrownve sweeps, respectively. Transition frequencies quoted in

Table 1 are averages of peak positions for forward and backward
sweeps.

of His-186; histidine is a known quencher of Trp fluores-
cence [22).

In the dodecamer-CBTX complex, with two Trp res-
idues, there is the problem of assigning the emission
which is seen. Since the CBTX phosphorescence is qual-
itatively much weaker than the peptide phosphores-
cence at similar concentrations, we will make the as-
sumption that the phosphorescence of the complex is
primarily due to Trp-187 in the 12-mer. This assump-
tion would be invalidated if, in thecomplex, CBTX were
to undergo a conformational change which would in-
crease the distance of Trp-25 from the quenching disul-
fide linkage. However, on the contrary, it has been
shown that CBTX binding of calf (4] and Torpedo pep-
tides [23] produce quenching of fluorescence. Thus it is
reasonable to assign the phosphorescence of the com-
plex primarily to Trp-187 in the dodecamer.

With this assumption, we can state that the dode-
camer phosphorescence (0,0) undergoes a slight. but

neasurable red shift, the 2E resonance frequency in-
creases by 27 MHz (Fig. 2¢,d) and the D-E decreases
by 18 MHz when the complex forms (Table I). All these
changes are indicative of a slight increase in the hydro-
phobicity of the Trp-187 environment upon binding to
CBTX. There is however no evidence for aromatic
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stacking interactions, which would be expected to lower
the value of the D parameter, which is related to the
degree of separation of the two unpaired spins in the
direction perpendicular to the indole ring, by at least 30
MHz [11,12]. In the complex with CBTX. the D of
Trp=187 is iowered by only 4 MHz.

The phosphorescence spectrum of the 18-mer (not
shown) is less well resolved than that of the 12-maer, and
shows a high proportion (41%) of rapidly decaying
components. These components might be assignable to
triplet ryrasinate, for which decay times in the range of
1.3 5 {24] to 1.6 5 [25] have been reported. Tyrosinate
Sfluarescence has been observed from the 18-mer; the
generation of a negatively charged center on this side
chain has been correlated with tie strength of binding
of this peptide to neurotoxit:» * ‘.. Another possible
source of rapidly decaying pr-«.. 2rescence compo-
nents is quenching by tie cleyed rasilue lysine-185,
which is immediately adjacent ¢ Tri=- 134 in the [8-muzy
the trimer Lys-Trp-Lys at 77 K aiows a biexponeatial
phosphorescence decay [11].

The phosphorescence (0,0) of the 18-mer at 412 um
is strongly red shifted from that of the 12-mer (409 nm),
the D-E resonance (Fig. 2b) occurs at a noticeably
lower frequency (1670 MHz vs. 1732 MHM2), and the 2
E resonance frequency is significantly higher (2550
MHz vs. 2488 MHz). All these shifts are indicative of
a more hydrophobic environment for the emitting Trp

Table |

Triplet state properties of a-cobratoxin (CBTX), the a185-196 dode-
camer, the 181198 18-mer, and their complexes with CBTX

Phos (0.0) 2E D-E Decuy parameters’

{(nm) (MHz) (MH2)
CBTX alle 247 - 3.5 £ 0.7 (15.8X0.286)
0.75 £ 0.14 (29.3)(%.33)
0.19 £ 0.01 (53.5)(5.3)
12-mer 409.0 2488 1732 1.2 £ 0.8 (4.2)0.313)
720,

072 1 (9.4X1.39)
0.164 = 0.001 (86.5)6.10)
3.4 £ 0.17 (13.1)(0.294)
0.7 £ 0,04 (16.7)(1.43)
0,173 = 0.001 (70.4)(5.78)
3.7+ 0.23 (18.2)0.270)
0.81 % 0.06 (23.1)1.23)
0.179 + 0.004 (58.8K5.59)
2.7 0.11 (11.4%0.370)
0.62 £ 0.03 (16.4)(1.61)
0.173 £ 0.001 (72.25.78)

12-mer 410.2 2515 1714
complex

18-mer 4120 2550 1670

18-mer 413.0 2541 1663
complex

Phasphorescence wavelengihs and ODMR frequencies were measured
ut 1,7 K in 1:1 by volume 5§ mM phosphate bufTer, pM 7.4 and ethylene
glycol: phosphorescence decuy curves were determined at 77 K in
70%:30% by volume glycerol-buffer, The concentrations for CBTX,
the dodecamer. and the dodecamer-CBTX complex were | mM, while
the concentrations for the 18-mer and 18-mer-CBTX complex were
0.5 mM. Measurements for the latter two samples were carried out at
pH 85
* Dty presented in the order: decay constant in s™' (% amplitude in
triexponential fitted decay) (corresponding decay time in s).
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residues in the 18-mer, as compared to the dodecamer,
in agreement with recent room temperature fiorescence
studies which showed a blue shift with increasing chain
length in these peptides {13). Complexation with the
toxin leads to very small changes in the phosphores-
cence and ODMR spectra. There is a slight (1 nm) red
shift in the phosphorescence, suggestive of increasing
hydrophabicity, but the ODMR frequencies of the 18-
mer and 18-mer-toxin complex are nearly the same
within limits of error.

In summary, our phosphorescence and ODMR re-
sults for these @-subunit peptides and their complexes
with a-cobratoxin are indicative of a slight but measur-
able increase in hydrophobicity of the peptide Trp resi-
dues upon toxin binding. This trend is certainly clearer
for the dodecamer, for which the phosphorescence is
better resolved. These findings are qualitatively consis-
tent with the binding model put forth by Low and
Corfield [5,6]. in which a Trp peptide residue is inserted
into a hydrophobic toxin cleft. However, the changes in
the D parameter are much too small to indicate any
aromatic stacking interactions upon binding. Qualita-
tively similar conclusions regarding the absence of Trp
stacking interactions were reuched in recent studies of
Turpedo peptide binding to a@-bungarotoxin using fluo-
E‘sgti',ence [13], ODMR [27] and two-dimensional NMR
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