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Interleukin-6 (1L.-6) induces changes in gene expression and the N-glycosylation patiern of'acute-phase proteins in hepatocytes. IL-6 exerts ils action

via a cell surface receplor complex consisting of an 80 kDa IL-6 binding protein (gp80) and a 130 kDa glycoprotein (gpl30) involved in signal

transduction. A genetically engineered gp80-derived soluble human IL-6-receptor (shlL-6-R) significanily enhanced the IL-6 effecl on N-glycosyl-

alion changes (revealed by reactivity with the lectin~concanavalin A) of 4,-protease inhibitor (P1) secreted by human hepaioma cells {HepG2). Siable

transfection of IL-6-cDNA into HepG2 cells (HepG2-1L-6) resulling in constitulive secretion of 2 ug of IL-6 per 10° cells in 24 h led to a

down-regulation of surface-bound gpB0 and subsequent homologous desensitization of HepG2-IL-6 cells towards 1L-6. Soluble human 1L-6-R
functionally substituted membrane-bound gp80 resuliing in a reconstitution of responsiveness of HepG2-1L-6 cells.

Acule-phase response; a,-Prolease inhibilor; Hepatoma cell; Interleukin-6; N-Glycosylation; Soluble interleukin-6-receptor

1. INTRODUCTION

IL-6 is a major hepatocyte stimulating factor [1,2]. It
regulates the expression of a number of plasma proteins
referred to as acute-phase proteins (APP) [1-3]. 1L-6 is
also involved in the regulation of N-glycosylation of
APP in hepatocytes [4]. 1L-6 exerts its action via a cell
surface receptor complex consisting of two components,
an 80 kDa glycoprotein (gp80) capable of IL-6 binding,
and a 130 kDa glycoprotein (gpl30) which does not
bind IL-6, but is involved in initiation of signal
transduction [5,6]. The ¢cDNAs of both components
have been cloned [5,7]. It turned out that the cDNA-
sequence for gp80 in hepatocytes is identical o the one
found in other celi types [8]. Studies on the mechanism
regulating gp80 and gpl130 expression in hepatocytes
have demonstrated that gp80 mRNA and its functional
protein is upregulated by glucocorticoids, but not by
[L-6 [9]). However, gp130 mRNA was shown to be
slightly increased by IL-6 and to a greater extend by the
combination of IL-6 and glucocorticoids [10]. IL-6 trig-
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gers the association of gp80 and gpl30 leading to a
functional 1L-6-receptor complex [6].

In hepatocytes 1L-6 and gp80 are internalized after
their interaction resulting in the down-regulation of sur-
face gp80 [11]. It is presently not known whether gp130
is internalized together with IL-6 and gp80. A gp80
mutant lacking cytoplasmic and transmembrane parls
could functionally substitute for gp80 [6,7]. Moreover,
analogous fragments of the gp80 solubie human 1L-6-
receptor (shIL-6-R) were found in human urine [12].

APP secreted by the liver carry N-linked complex-
type giycans, which may be formed as bi-, tri- or tetra-
antennary structures [13]. Stimulation of hepatocytes
may either increase or decrease the relative amounts of
bi- versus multi-branched glycans on the APP polypep-
tide backbone [14,15]. These changes may be assessed
using crossed affinity-immunoelectrophoresis (CAIE)
with the lectin Con A as a ligand [16]. Con A immuno-
electrophoresis separates glycoforms of plasma proteins
bearing various amounts of bi-antennary N-glycans
[17]). Forms possessing tri- and/or tetra-antennary N-
glycans do not react with the lectin in CAIE, forms
having one bi-antennary unit react weakly, forms hav-
ing two bi-antennary structures react strongly. By as-
sessing relative amounts of a particular Con A-gly-
coform of the APP studied it is possible to evaluaie
either relative increases or decreases of bi-antennary
compared to tri- and/or tetra-antennary N-glycans.

The present studies were undertaken to elucidate the
role played by the shlL-6-R in the regulation of N-
glycosylation of APP by IL-6. The studies were carried
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out using the human hepatoma cell line HepG2 as target
cell and PI as a typical hepatic APP. HepG?2 cells were
stably transfected with IL-6-cDNA (HepG2-1L-6) and
used as a model for a ‘chronically inflamed liver’. In
these cells gp80 is constitutively down-regulated and the
induction of APP is solely dependent on the addition of
shlL-6-R.

2. MATERIALS AND METHODS

2.1. Reagenis

Restriction enzymes, polynucicotide kinuse, cuif intestinal phos-
phatase, T4-DNA ligase were from Boehringer Mannheim (Ger-
many). [x-**P]ldCTP (110 TBg/mmol) and [a-**S]dATP (44 TBg/mmol)
were from Amersham International (United Kingdom). Geniticin
(G418-sulfate) and DMEM were from Gibeo (Eggenstein, Germany).
RhIL-6 was prepared as described in [18]. The specific activity was
1.5%10°% B-cell stimulatory factor 2 units/mg protein [19]. Platelet-
derived purified TGFS! was from R&D Systems Inc. (Mineapolis,
MN, USA). Rh LIF was a generous gift of Dr. H. Baumann (Buffalo,
NY, USA)[20]). Rh INF7 was from Bioferon (Laupheim, Germany),
Con A type I'V was from Sigma Chem. Co. (St. Louis, MO, USA).
Polyclonal antiserum against huinan PI was from Dakopatts (Ham-
burg, Germany). Human IL-6-cDNA and gp80-cDNA were isolated
as described [8,21]. Human PI-cDNA was supplied by Drs. G, Cili-
berto and R. Cortese (IRBM, Rome, Italy).

2.2, Celf culteres

HepG2 cells (ATCC, Rockville, MD, USA) were cultured in
DMEM/DMEM-F12 medium. NiH/3T3 cells (ATCC) were grown in
DMEM. Culture medium was supplemented with 10% fetal calf
serum, streptomyein (100 mg/l) and penicillin (61 mg/).

2.3. Stable trausfection af cells

Transfections were carried oui as described in [22). N1H/3T3 cells
were stably transfected with the expression vector pPBMGNeo [23]
carrying the extracellular domain of the human gp80-cDNA fused to
a translational stop codon (H. Schooltink et al., in preparation) under
the transcriptional control of the mouse metullothionein I promoter.
HepG2 cells were stably transfected with an [L-6-cDNA in the same
expression vector.

2.4, Generation of soluble human IL-G-R

ShIL-6-R was obtained from the conditioned medium of NI1H/3T3
cells transfected with the gp80-cDNA lacking the sequences coding for
the transmembrane and cytoplasmic domains. Specific activity of
shIL-6-R was estimated in a cell-free IL-6 binding assay. One unit wus
defined as the capacity of shIL-6-R to bind 100 ng of '*l-rh1L-6 (H.
Schooltink et al., in preparation). Medium from untransfected NIH/
3T3 cells was used as a control.

2.5, RNA-preparation and Northern blot anulysis

HepG2 and HepG2-IL-6 cells were cultured in the presence of
cytokines and/or shIL-6-R for 21 h. Subsequently, total RNA was
prepared [24] and subjected to Northern blot analysis. A 1.35 kb Pl
fragment of human PI-cDNA was labelled by random priming {25]
and used as a hybridization probe.

2.6. Determination of the production and N-glycosylation pattern of Pl
secreted by HepG2 and HepG2-IL-6 cells
11epG2 and HepG2-IL-6 cells were incubated with cylokines and
shIL-6-R for 48 h with replacement of medium afler 24 h, Analyses
were carried out in the mecdia collected over the final 24 h, PI secreted
by hepatoma cells and accumulated in the ¢ulture medium was meas-
ured by an electro-immunoassay [26]; accumulation of APP secreted

258

FEBS LETTERS

July 1992

by human hepatoma cells into the culture mediut: paralleled the rate
of synihesis of [¥S]methionine-labelled APP[27]. The N-glycosylation
paltern of Pl was studied by CAIE with Con A [50 uM] as a ligand
[17,28]. Three glycoforms were observed (Fig, 2): variant O=non-reac-
tive with Con A, composed of three tri-antennary glycans; variant
1=weakly reaclive with Con A, composed of | bi- and 2 tri-aniennary
glycans; variant 2=reactive with Con A, composed of 2 bi- and 1
tri-anlennury glycans, The area under the precipitates was determined
by planimetry and relative amounts of Pl-glycoforms were expressed
as percentages of total. In order to express the degree of relative
changes of N-glycans composition the PI-Con A reactivity coeflicient
(RC) was calculated according to the formula: (sum of Con A reactive
variants) / (Con A non-reactive variants). An increase of the RC value
reflects increased relative amounts of bi- versus multi-branched N-

rlucnnc
Siyeain,

2.7, IL-G assay

IL-6 was measured using the 1L-6-dependent murine plasmacytoma
cell line B9, generously supplied by Dr. L. Aarden (Amsterdam, The
Netherlands) [29],

2.8. SHIL-G-R assay

NIH/3T3 conditioned media (i00 x«l) were incubated in a Lotal
volume of 500 41 of PBS containing 0.01% Tween 20 with ['*1]rhIL-6
for 3 h at 4°C followed by incubation with a monospecific polyclonal
antiserum against shIL-6-R (T. Sioyan et al., in preparation). The
immunocomplexes were precipitated using protein(A)-Sepharose and
counted in a y-counter.

3. RESULTS

In HepG2 cells IL-6 moderately increased in a dose-
dependent manner PI synthesis at mRNA (Fig. 1) and
protein (Table I) levels. Addition of shIL-6-R to the
incubation medium enhanced the effect of IL-6. IL-6
decreased Con A reactivity of PI secreted by HepG2
cells with a maximum at the dose of 100 U/ml (Fig. 2,
Table I). ShIL-6-R augmented the IL-6 effect, especiaily
at high doses of 1L-6 (Table I). Increasing concentra-
tions of shlL-6-R added to a censtant amount of IL-6
amplified its effect in decreasing P1-Con A reactivity in
a dose-dependent manner with a maximum at a dose of
5 U/ml (data not shown).

HepG2-IL-6 cells constitutively synthesized and se-
creted rhIL-6 in amounts of 2 ug/10° cells/24 h, These
cells showed similar levels of PI mRNA and secreted
comparable quantities of PI as non-transfected HepG2
cells in the absence of IL-6. Con A reactivity of PI was
also comparable to that of PI from intact non-stimu-
lated HepG2 cells (Fig. 2). Treatment of HepG2-1L-6
cells with ZnCl, or addition of exogenous IL-6 did not
change PI-mRNA or PI-Con A reactivity (data not
shown). Exposure of these cells to LIF, INFy or TFGf
affected PI-Con A reactivity (Fig. 2, Table I) while it
had only a marginal effect on PI mRNA levels (Fig. 1).
Addition of shIL-6-R to HepG2-IL-6 cells resulted in
a dose- and time-dependent induction of P mRNA and
protein (Fig. 1). ShIL-6-R significantly decreased Con
A reactivity of Pl secreted by these cells in a dose-
dependent manner with a maximum at 5 U/ml (Fig. 2,
Table I}.
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Fig. I, Northern blol analysis of &,-protease inhibitor: (A) Induction of PI-mRNA by 1L-6 and combinations of 1L-6 and shIL-6-R in HepG2 cells;
(B) effect of shIL-6-R, LIF, TGFS, IFNy and dexamethasone on PI-mRNA expression in HepG2 cells stably transfecied with 1L-6-cDNA
(HepG2-IL-6 ceils). Time- (C) and dose- (D) dependent induction of PI-mRNA by sh1L-6-R in HepG2-IL-6 cells,

4, DISCUSSION

There are three major findings of this study: (i) shIL-
6-R enhances the IL-6 eftect on the N-glycosylation of
PI secreted by HepG?2 cells; (ii) prolonged exposure of
HepG2 cells to IL-6 leads to their homologous desensi-
tization; (iii) shIL-6-R reconstitutes the responsiveness

Table 1

of IL-6-desensitized HepG2 cells as measured by
changes in PI N-glycosylation.

Soluble cytokine receptors have been identified for a
number of cytokin:s (reviewed in [30]). Their function,
however, still remains unknown. They are generally be-
lieved to compete for the ligand with their membrane
counterparts which finally leads to a decrease in the

Effect of shIL-6-R on synthesis and Con A-reactivily of PI secreted by HepG2 and HepG2-1L-6 cells

shIL-6-R (5 U/ml)

Pl.synthesis® Con A-reactivity (RC?)

- + - +
HepG2 Control 100 100 35 35
iL-6 1 (U/ml) 105 110 24 22
IL-6 10 (U/ml) 120 140 1.5 1.0
1L-6 100 (U/ml) 155 200 1.3 0.6
IL-6 1000 (U/ml) 150 200 1.6 1.0
HepG2-IL-6 Control i00 4.0
shiL-6-R 1.0 (U/ml) 140 1.2
2.5 (U/ml) 180 0.75
5.0 (U/ml) 220 0.7
7.5 (U/ml) 200 1.0
10 (U/ml) 180 1.2
LIF 10 (U/m)) 130 1.2
TGFf 2 (ng/ml) 120 5.6
INFy 100 (ng/ml) 90 2.7

* Analysis was carried out by means of electroimmunoassay. Results are expressed as percentages of the control and represent mean values of four

experiments.

® Analysis was carried out by means of crossed affinity-imniunoelectrophoresis with Con A as a ligand. RC = reactivily coefficient of PI-Con A

calculated as described in Materials and Methods.
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Fig. 2. Con A affinity electrophoresis of PI secreted by HepG2 (upper part) and HepG2-IL-6 cells (lower part) upon incubation with 1L-6 (100

U/ml), shIL-6-R (5 U/ml, 7.5 U/ml), LIF (10 U/ml), IFNy (100 U/ml) and TGFg (4 ng/ml). Incubation of HepG2 cells with 1L+6 and shIL-G-R

wus performed al concentrations of 100 U/ml and 5 U/ml of IL-6 and shIL-6-R, respectively. PI variant 0 - non reactive with Con A; variant |
— weakly reactive; variant 2 - reactive with Con A,

biological activity of the cytokine, Our findings indicate
that soluble IL-6-Rs display a unique activity resulting
in the enhancement of IL-6 effects on hepatocytes. This
is supported by the loss of responsiveness of HepG2
cells following continuous exposure to IL-6. The possi-
ble mechanism involved is probably related to the
down-regulation of the gp80-1L-6 binding protein [!1].
Interestingly, responsiveness of 1L-6-desensitized cells
could be reconstituted by shIL-6-R which functionally
substitutes for membrane-bound gp80.

During various inflammatory processes changes in
the N-glycosylation profiles of APPs in patient sera
were observed [31]. In ‘acute inflammation’ increases
(type 1), in ‘chronic inflammatory states’ decreases (type
I1) in relative amounts of bi- versus multi-branched N-
glycans were found [31]. In some inflammatory disor-
ders such as systemic lupus erythematodes (SLE) [32] or
AIDS (A. Mackiewicz et al., in preparation) no altera-
tions in N-glycosylation were seen. However, intercur-
rent infection in the course of SLE leads to type [
changes [32]. Alterations in APP N-glycosylation seam
to be controlled by cytokines affecting hepatocytes
[17,28]. IL-6 is a major inducer of both types of altera-
tions in N-glycosylation [4]. Other cytokines such as
TGEFB, LIF, INFy, TNFa or IL-1 interact with IL-6
which finally leads to type I or type II changes [17,28].
Here we report that shiL-6-R may be an important
component of the regulatory network governing N-gly-
cosylation of APP,

In view of our findings and the recent report on high
IL-6 levels in SLE patient sera [32] no alterations in
N-glycosylation of APP could be associated with down-
regulation of gpB80 on the hepatocytes and subsequent
desensitization to IL-6 in these patients. Furthermore,
type I alterations seen in SLE patients with intercurrent
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infection [33] might be attributed to the effect of shiL.-
6-R.

Post-translational modification of oligosaccharide
side chains of glycoproteins is a multi-step enzymatic
process. Highly specific glycosidases and glycosyltrans-
ferases sequentially process an oligosaccharide precur-
sor to yield various types of N-linked glycans [34]. The
branches that occur on complex-type oligosaccharides
are initiated by the incorporation of a N-acetyl-glu-
cosamine (GlcNAc) residue. This reaction is catalyzed
by GleNAc-transferases (GnT). GnT I, GnT IV and
GnT V catalyze the formation of bi-, tri- and tetra-
antennary structures, respectively. Control of the level
of relative activity of different GnTs is one of the regu-
lating mechanisms of branching during the synthesis of
complex-type N-linked oligosaccharides. Recently, [L-6
has been demonstrated to increase GnT IV and GnT V
activity and decrease GnT III activity accompanied by
an increase of tri- and tetra-antennary glycans on
glycoproteins [35]. It should be noted that reduced GnT
1l activity might also contribute to the formation of
multi-branched structures, since GnT III and GnT V
compete for the same substrate [36]. Accordingly, the
IL-6 effect on changes in the N- glycosylation profile of
PI is most probably due to the regulation of gene ex-
pression of GnTs.
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